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ABSTRACT

We settle a series of questions first raised by Yates at the Jerusalem (1968)
Colloquium on Mathematical Logic by characterizing the initial segments of the
degrees of unsolvability of size X,: Every upper semi-lattice of size N, with zero,
in which every element has at most countably many predecessors, is isomorphic
to an initial segment of the Turing degrees.

Introduction

The study of initial segments (or equivalently the ideals) of the Turing degrees,
9, has been a major concern of Recursion Theory since Post [13] and Kleene
and Post [6] began the systematic investigation of the structure of the degrees
under T-reducibility. The first result was the existence of a minimal degree
proven by Spector [21] to answer the question raised in Kleene and Post [6].
Since that time there has been a long sequence of questions, conjectures and
theorems by many people elucidating more and more of the possible initial
segments of 2. We cite just a few of the key steps: Countable linear orderings,
Hugill [4]; countable distributive lattices, Lachlan [7]; all finite lattices, Lerman
[9]; all countable upper semi-lattices, Lachlan and Lebeuf [8]. The techniques
developed in these papers have been applied to many other degree structures
from 1-1 degrees to degrees of constructibility. Indeed their analogs in set theory
(perfect forcing or Sacks forcing) have had applications beyond those to degree
structures. Within recursion theory the results have come to play a key role in
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the analysis of the global structure of 9 and so in answering much more general
questions. Perhaps the first such application was by Feiner [2] who used the
results on linear orderings to refute the strong homogeneity conjecture. Lach-
lan’s [7] result of course gave the undecidability of the theory of & while it or
other initial segments results played a key role in all the more recent work on the
global structure of 9 as in Simpson [20] or Nerode and Shore [11] which
characterizes the degree of Th(%) as that of true second order arithmetic. Other
applications include the refutation of the homogeneity conjecture in Shore [18],
restrictions on possible automorphisms of & in Nerode and Shore [12] and
various definability results in & as, for example, in Jockusch and Shore [S]. In
another direction Lerman’s result on finite lattices was the key ingredient in the
proof of the decidability of the two quantifier theory of & (Shore [17] and
Lerman [10]). A reasonable survey can be found in Shore [19].

Now all of these results have dealt with just the countable initial segments of
. Although there were some early isolated results on the uncountable ones
(e.g., Thomason [22]) they remained largely mysterious. The problem as to what
they might be was first raised in Yates [23] in a series of questions about the
initial segments of & of size N;. At the time there was some fecling that the
answers might be independent of ZFC and a consistency result for an initial
segment of type w, was pointed out. As it turned out, he was both right and
wrong. He was right in that the independence phenomenon was lurking in the
initial segments problem but wrong in that it does not appear with ones of size
N.: Groszek and Slaman [3] prove that it is consistent (relative to the con-
sistency of ZFC) that the continuum is large (e.g., 2" >N;) and there is an
upper semi-lattice (u.s.l.) [with 0 and the countable predecessor property] of size
N, (and so < 2') which is not isomorphic to an initial segment of &. In this paper
we will give positive answers to the entire sequence of questions of Yates [23, §6]
by proving (in ZFC) that every u.s.l. of size N; with 0 and the countable
predecessor property is isomorphic to an initial segment of 9. (Of course as &
has a least element 0 and every degree has at most countably many predecessors,
every initial segment of & of size N; must have these properties.) We also
describe the minor additions needed to get the result for ## and wet degrees as
well.

We should mention that some partial results along these lines (for w; and then
distributive lattices) were announced in Rubin [14] and [15] but no write up ever
appeared and we do not know what were his intended constructions. The
motivation for our basic approach to iterating the initial segment construction
into the transfinite comes from a forcing argument in Shelah [16].
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As in Lerman [10] one should, as Sacks first suggested, view the initial
segment constructions in recursion theory as forcing arguments where conditions
are recursive perfect trees and generic objects are those which meet certain
specified collections of dense sets. Suppose that & is the appropriate notion of
forcing for embedding a countable u.sl. Z as an initial segment of 9. A
condition will consist of finitely many elements of %, trees for each one and maps
between them. One then specifies a collection of dense sets € such that any
€-generic filter ¢ on & gives an isomorphism of £ onto an initial segment of &
by sending x to the degree of the branch of the tree associated with x
determined by 4 (G, = U{T,.(¢) l P € 4} and x » deg G,). The problem now
is how to extend ¥ to a €-generic filter ' on ?’, the notion of forcing for some
Z' D %, and to do this in an iterable way so as to be able to carry on through
w;-many extensions. The idea of Shelah [16] is that one restricts 2’ to those
conditions which are represented by conditions in ¥ via some isomorphism.
More precisely if ¢ : £— £’ is a partial (u.s.l.) isomorphism and P € ¢ then
P’'= ¢(P) is an element of ?' where P’ is gotten from P by relabelling every
element x as ¢(x). To make sure that any €-generic filter ¢’ on ?' extends ¥,
one requires that ¢ ' ¥ =id. If one can define ? and € so that such an
extension is always possible then one can follow a division of a given u.s.l. £* of
size N, into countable sub us.l’s, £*= Ua<‘,,l§£,,, to build a monotonic
sequence of €-generic filters ¥, for the appropriate notions of forcing ?, such
that 9* = U, ., %. defines an isomorphism of £* onto an initial segment of 9
the same way ¥ did for the original countable <.

We carry out this program for linear orderings in Section 1. First (Theorem
1.21) we give a fairly standard presentation of the countable case, basically in the
style of Lachlan [7] as presented in Epstein [1] with a couple of minor
modifications to pave the way for the extension process. We then proceed to the
size N; case. Of course the key problem is the choice of the appropriate dense
sets (and the proof that they are dense) to permit the extension process to
proceed. These are to be found in Definitions 1.22 and 1.23 and Lemmas
1.24-1.26 along with motivation for their precise form. Lemma 1.27 then carries
out the inductive argument by showing that if ¥, is €-generic for %, then the
sets in € are dense in .., and so there is a G,.: D % €-generic for P,.:. As
limit levels are essentially triviat (4 = U,.<, 4. and #, = U,., ?.) this com-
pletes the proof for linear orderings, Theorem 1.29.

Unfortunately, the result for arbitrary u.s.l.’s is considerably more compli-
cated than that for linear orderings (or even distributive lattices which much
resemble linear orderings). Of course there are the severe extra complications



4 U. ABRAHAM AND R. A. SHORE Isr. J. Math.

even in the countable case when one gives up distributivity. These are presented
in Section 2 in the style of Lerman [10] (again with some minor modifications to
pave the way for the extension process) where we present Lachlan and Lebeuf’s
result for countable u.s.l.’s (Theorem 2.17). Much more, however, is needed in
the general case than was done in Section 1 to carry the extension procedure into
the transfinite. The bulk of the paper (Sections 3 and 4) is devoted to this
problem.

There are two main points. The first is that only very special conditions P in %,
can be used to represent ones P’ in %,., via an isomorphism ¢. Roughly
speaking ¢ ~'[Lr] must be as free as possible over ¢ '[L, N £.]. [L» is the finite
u.s.l. whose elements are mentioned in P.] The precise definition is motivated
and then presented in Definition 3.2. Various needed algebraic properties of
such extensions are then established in Lemmas 3.3-3.6. We can then define (3.7)
the notions of forcing ?, modulo the correct choice of the class € of dense sets.
Their definition is motivated and then given in Definitions 3.8 and 3.9. Assuming
the density of these sets at the initial level the inductive argument is then given in
Lemma 3.10.

What then remains is the demonstration of the density of the sets needed for
the inductive argument. The proof is provided in Section 4. The key ingredient
here is an extension of the u.s.l. representation theorems proved by Lerman [9]
and Lachlan and Lebeuf [8] that exploits the special extension introduced in
Section 3 to enable us to refine a nice representation of a given finite u.s.l. to one
for a larger one containing two isomorphic copies of (some part of) the first in
such a way that each one induces the same reduction procedures on the
associated sets being constructed. This is Theorem 4.1.

We follow the style and notation of Lerman [10] as much as possible. We have,
however, included all definitions dealing specifically with initial segments results.
Section 1 is in fact self contained and can be read without previous knowledge of
initial segments results. (One does need to know that {¢ 7} is a list of all possible
Turing reductions from X.) In Section 2, however, we have relied on Lerman’s
[10, chapter VII] embedding of finite lattices as initial segments in that we refer
to that book for the proof of two key lemmas (2.14 and 2.16). Similarly we rely
on his construction of suitable representations for finite lattices {10, appendix B,
§2] in our proof of Theorem 4.1. Otherwise, the paper is self contained.

1. Linear orderings

Our goal in this section is to give a self-contained proof of our embedding
theorem for the special case of linear orderings: Every linear ordering £* of size
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N, with least element and the countable predecessor property (i.e., {y l y <x}is
countable for every x € £*) is isomorphic to an initial segment of the Turing
(wit and 1) degrees. Although many of the problems encountered in the general
case of arbitrary upper semi-lattices do not appear here the main idea motivating
the construction can be seen relatively clearly.

We begin with a proof for countable orderings £ which is then extended to
uncountable ones. (See the discussion following Theorem 1.21 culminating with
Definition 1.22 of the forcing notion and Definition 1.23 of the required dense
sets for an explanation of this extension process.) Most of our notations and
presentations are those of Lerman [10] although in the case of linear orderings
almost all notions of lattice representations are suppressed in favor of an
unstated representation within the recursive sets under inclusion as used, for
example, in Lachlan 7] or Epstein [1]. (We, of course, must bring the
representations and associated lattice tables out in full force in the general case.)

A more germane difference from Lerman [10] as well as other common
presentations is that we cannot assume that £ has a maximum element if we
hope to eventually extend the embedding to one of an £* of size N;. Thus we
cannot work with a single master tree approximating such a maximum element
but must have conditions with distinct trees T; for each of the elements i € £
being approximated by the condition. The role of the congruence relations that
dictate the decoding of the sets corresponding to other elements of & from the
branch on the master tree is played by a (commutative) family of recursive maps
sending branches of T, to ones of T; for i less than j in %

These ideas are embodied in Definitions 1.3 and 1.6 which should therefore be
studied even by those familiar with Lerman [10]. Such a reader can then skim to
the end of the proof of the embedding result for a countable £ (Theorem 1.21).
A reader familiar with some other proof of this result should go over all the
definitions and statements of the lemmas to become familar with the notational
setup. The proofs, however, are essentially standard. The only one even slightly
out of the ordinary (because of our not assuming a maximum element) is Lemma
1.11 which is worth a look for that reason. Finally, for the reader who has never
seen or no longer remembers any initial segments results (except perhaps the
existence of a minimal degree) we have included all basic definitions and
complete proofs.

DerFINITION 1.1, Strings. (a) & is the set of all strings o, i.e., all finite
sequences of natural numbers or more formally all maps o : n— « for some
n € o.
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(b) The length of a string o, lth g, is its domain.

() We order strings by extension o C 7 iff Vn,m [c(n)=m — 7(n)=m].

(d) For a given function f : @ — [w]™* we let & be the set of all f-strings, i.e.,
all o such that Vx <Itho (o(x) € f(x)) ((«]™ is the set of all finite subsets of
o). In particular if f(x)=p ={0,1,..., p — 1} we call these p-ary strings, e.g., if
p =2 these are the binary strings.

DErFINITION 1.2, Trees. Let f:w —[w]™ be given.

(@) An f-tree is a map T:%,— % such that (Vo,7EF)[eC7 &
T(o)C T(7)].

(b) 7ison T iff o [ = T(o)].

(c) 7 is compatible with T ifft 3o [ C T(0)].

(d) hison T iff V7 C h [r is compatible with T]. In this situation we call h a
branch of T. It is associated with a path g through T such that h = T[g] =
Ut T(o). [T]={k |k is on T}.

(e) T is recursive if it is recursive as a function.

(f) T is uniform if (Yn) ({p; Ij € f(n)} of equal length)

(Vo of length n)(Vj € f(n))[T(o * j) = T(c)* p;].
(g) T* is a subtree of T, T*C T, iff rgT*CrgT.

Note. One can specify an (f-) subtree T* of an (f-) tree T by giving an (f-)
tree S and setting T* = T> S. Now if T and S are uniform so is T*. One can in
this case also specify T* by induction on length o by giving at level n for each
J € f(n) the string p; such that if T*(¢) = T(7), then T*(co * j)= T(7 * p;). Thus,
for example, if T* C T are both uniform then (Vn)(3m) (Vo of length n) (37 of
length m) (T*(o) = T(r)).

For the rest of this section all strings will be binary and all tress will be binary
uniform and recursive. As we identify a set with its characteristic function we will
speak of a set G being on a tree T, determining a path through T, etc.

Let & be a given countable linear ordering (with least element 0) specified by
<. We wish to define a notion of forcing, i.e., a partially ordered set (%, =)and a
class ¢ of dense (i.e., downwardly cofinal) sets such that any €-generic filter ¢
specifies an embedding of £ as an initial segment of the Turing degrees 9.
[Recall that 4 C P is €-generic if

() YPEYVQzZPQEY),
(i) V,OQOEYIREY (R=P&R=Q),
(i) VCE G (4N C#D)]
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The basic ingredients of our forcing conditions (elements of ?) will be trees T;
which we think of as approximating some G; on T; whose degree will be the
image of i € £ under the hoped for embedding. We reflect the requirement that
if i<j then G:=:G; by including recursive maps from [7;] to [Ti] in our
conditions. These maps will be specified by a recursive monotonic function f
such that to see whether at level n the path C; associated with G; turns right
(C:(n)=0)or left (C;(n)=1) one just asks which way the one C; associated with
G, turns at level f(n). Now if rg f = w (or is even cofinite) we could reverse this
process to compute the path on T; from the corresponding one on T;. As we will
want G; Z£:G, if jX i we consider only maps f with coinfinite range.

DEFINITION 1.3, Projections. (a) Let S and T be trees and f a recursive
monotonic function with coinfinite range. We say that f induces the recursive
projection F :[T]—[S] if F(T[C))=S[f'[C]] where f':%,— %, is given by
f o) ()= o(f(n)) and f[C)=U,ccf (o).

Thus, for a given branch T[C] following the path C through T, its image
under F is the branch of § determined by the path of f~'[C] which turns right
(left) at level n just if C does at level f(n).

(b) In this situation we say that two strings o and 7 are congruent mod f,
o =, if f(0)=f"'(v). We say that level n of T is an f-differentiating level it
for o of lengthn f (e *0)# f'(a *1),i.e., 0 *0#,0 * 1. Similarly if T* C T we
say that a level n of T* is f-differentiating (relative to T) if for o of length n and
T*(o*r)y=T(z,), 10%; 7.

(c) If f induces a projection F:[T]—[S] as above and T* C T has infinitely
many f-differentiating levels then there is a natural subtree $* = F(T*) which is
the projection of T*: Suppose we have defined S* up to level n and for some o of
length n S*(0’) = S(r) and we have a p such that f'(p) =7 and T(p) = T*(n).
Find the shortest po, p) D p such that f'(po) # f'(p:) and such that T(p,) and
T(p)) are on T* (these exist by our assumption on T*) and set S*(o *r)=
S(f'(p.)), r =0,1. (For definiteness we can preserve lexicographic ordering as
well. Uniformity guarantees that this definition is independent of the choice of po
and p,.) It is clear that F* = F [[T*] maps [ T*] onto [S*] and is induced by some
appropriate f*. (With the above notation if T*(n,)= T(p,) then f*(n) =
Ithn, — 1)

DerINITION 1.4. We can now define the notion of forcing # appropriate to
&£. A condition P consists of a finite L, C ¥ with0 € Lp, trees Tp; for0<i € Lp
and projection maps Fp;; : [Tr;]— [ Tr:] induced by functions f»;; as above for
each i,j € L, with { <j such that the maps form a commutative system, i.e.,
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feix = frixofeij and so Fpx; = FpjioFpx; for i <j<k in Ly. Note that for
notational convenience we include T, which is not a true tree but simply the one
branch Ty(o') = 0""°. Similarly the maps f,, are trivial, i.e., empty, foi(a) = 0"
for i the < -least element of L, —{0}; the other fq; are defined by composition
and of course Fo(G)=O for every i, G. We say that Q refines P,Q =P, if
LoD Lp, To; CTe, for i €Ly and Foj; = Fpji [ [To;] for i <j in Le. P and Q
are compatible if they have a common refinement.

DerFINITION 1.5. If P € P we adapt our general definitions of projections
(1.3) in the obvious way. Thus for i <j in L, we say that o and 7 are congruent
mod(i,j), o =;;7, if o =, 7 (of course o =o; 7 for every o, 7 and i) and level n
of T; is i-differentiating if it is fr,;-differentiating. More generally level n of T, is
(i, j)-differentiating where i <j<k if for o of length n o *0=,,0*1 but
og*0#,,0%1. We say that level n of Ti is simply a j-level if it is (i,])
differentiating for i the immediate < predecessor of j in L.

DerFniTION 1.6.  Using the projection trees of Definition 1.3(c) we can define
a Q=P with L, =L, by specifying a T*C Trx =T for k the <-greatest
element of L, as Tp, and then simply setting To; = Fpi: (T*) for i <k in Ls.
We must, of course, begin with a T* which has infinitely many i-levels for every
0<i<k in Lp. (Level n of T* is an i-level if for any o of length n with
T*(e)=T(r) and T*(o *j)=T(7 *p;), 7% po=us T * py but 7% po#., 7 * p; for
i’ the <-immediate predecessor of i in Lp.)

We can now begin to list the dense sets in € so that any €-generic filter gives
our embedding. We begin with the ones that define G..

DerINITION 1.7.  Totality: €, consists of the sets

Dy, ={P Ilth Tri(¢)= n foreachi € Lp}, n € w.

LemMma 1.8. Each D,, is dense.

ProOF. Choose any o such that Ith fz;«(d) = n for i and k the <-least and
< -greatest elements of L, — {0} respectively. We define a Q = P with Lo = Lr
and Q € D,,, by defining Tox C Tpx and taking projections as in 1.6 above. We
just set Tox = Ext(Tp., o) where

DerFNITION 1.9.  Ext(T, o) is the tree T* given by T*(7) = T(o * 7). O

DerFINITION 1.10.  Extendibility: €, contains %, and the sets D,; =
{P'jELp} for jE Z.
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LemMma 1.11. Each D, is dense.

PrROOF. Let PE P and j& L, be given. We will define a Q =P where
Lo = L U{j} and Ty, = Try, foix = feix and Fou; = Fpy, for i <k in L, and
To,; = identity map on <. Thus to completely specify Q it suffices to define the
required maps fox, i, kK € Lo. Let [ be the < -largest element of L,. If | <j then
we can simply define fo,;(x)=2x. All other mapsfo;; are just given by
composition: fo,; = fou; © frii- Otherwise let k be the <-immediate successor of
j in Lo. We can define fo;; as any monotonic recursive map f such that {n Ilevel
nof T,, is an i-level for i < k}Crgf C{n Ilevel n of Ty, is an i-level for i < k}
and such that rg f is coinfinite in the latter set. All other maps are determined by
the commutativity requirements:

foii = f‘] ° fo.ii for i <j,

foiui = fz)fi,l"f for j <i

(where we are using f ' in the usual sense as a partial map from o to w).
As these maps are clearly recursive monotonic and have ranges coinfinite
where required Q is a forcing condition refining P. O

Note now that if 4 is 6,-generic then we can naturally define G; for i € & as
U{T:.(@)|PE Y & i € Ly} and be assured that G; is total for every i € £.
Moreover, if i <j then G, =;G; via the Fp;; specified by any P € § with
i,j € Le. (In fact, it is clear that G; =, G;.) It is our intention to specify additional
dense sets to give a € 2 €, such that for any €-generic ¢ the map sending
i » deg(G;) gives an order isomorphism of £ onto an initial segment of 9. To
facilitate the descriptions of these dense sets we first define forcing.

DerINITION 1.12.  Forcing. For any P € # and any sentence ¢ of arithmetic
with finitely many set parameters G, i € Lp, we say that P forces ¢, P I+ ¢, if for
any G on Ty, | the <-largest element of Ly, ¢(Gi, ..., G;,) holds of the sets
Fe1i,(G), ..., Feii (G). [Or equivalently in this setting if, for any %;-generic ¢
containing P, ¢ is true for the appropriate G; associated with 4]

Now for the various dense sets required.

DEeFINITION 1.13.  Diagonalization. €, contains €, and the sets D,,;; =
(Q|ji%i=>QF=(¢%=G)} for e €w, i,jE L.

LEMMA 1.14. The sets D, ;; are dense. Indeed if i,j € Lr we can find a Q = P
with Lo = Ly and Q € D,..;;.
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PROOF. Let P € 2, e € w, and jX i be given. By Lemma 1.11 we may as well
assume that i,j € Le. Let | be the <-largest element of L, and o a string on a
j-level of Tp;. Thus o *05#;,0 *1 but ¢ *0=;,0 *1. Suppose then that

To; (friilo *))(x) # To; (frado * D) (x).

If there is no 7 on T», extending Tpi(frio *0)) (= Tei(frio *1)) =
Tr: (fri(0)) by choice of o) for which ¢i(x)| then the condition Q =P
specified by setting Lo = L and To; = Ext(Tr,, o) forces ¢ 7(x)1 and so is as
required. Otherwise let 7 = T (p) be be such a string. Choose k € {0, 1} such
that

¢i(x)# Te; (foinlo * k))(x)

and 1 Do *k such that fzi(n)=p. If we now let Q =P be determined by
setting Lo, = Ext(Tp;, ) we see that Q7 C G; and so Q k¢ S(x)= di(x)
while we also have Q  Tp; (frii(d *k)) C G; andso Q FS(x) ) # Gj(x). O

DeriNITION 1.15.  Initial segments. €5 contains €, and for e €Ew, i € £ the
sets

D,.; ={0Q Ifor some j <i QF d)f‘ is not total or ¢,G‘ETG,-}.

LEMMA 1.16. The Ds,; are dense. Indeed if i € Ly we can find a Q = P with
LQ = Lp and O c D3,¢,i.

PROOF. Let PE P, e €E w, i €E ¥ be given. We may, of course, assume that
i € Ly and let [ be the < -largest element of L,. Moreover we may assume that
for every o and every x there is a 7 D o such that the condition P’ specified by
refining the top tree Tp; of P to Ext(Ty, 1) forces ¢J(x) | . (Otherwise the
condition Q specified by refining Tr, to Ext(Te,, o) forces ¢ 7(x) 1 as required.)
We now need a definition.

DeriNTION 1.17. {0, 7) gives an e-splitting (of p) on T [for S]if p C o, 7 and
there is an x such that ¢ (x)| # ¢.”(x)| [and o =¢7 where f induces a
given map F :[T]—[S]]- We call the pair (T(c'), T(7)) an e-splitting (of T(p))
on T [for S].

SuBLEMMA 1.18. Suppose now that for some p no pair {(o,7) gives an
e-splitting of p on Ty, for Tp; (j < i, j € Lp) and Q = P is given by refining T», to
Ext(Trs, n) where f55(n)=p then Q & ¢5= G; or $75 is not total.

PrOOE. Let ¢ be any %;-generic filter containing Q. Suppose ¢ is total.
Thus for each x there are o and 7 such that o = To(r)C G: (and so
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To; (fo;{7)) C G;) and ¢:(x) | . As there are no e-splittings on Ty, for To; any
7' for which dJ,TO“(T')(x)l and To,(fo;(7))C G; gives the same answer as
dI(x)= ¢ S(x). (Otherwise we could extend the shorter of 7, 7’ (say 7) to 7" of
the same length as the larger by copying over a final segment (of 7'). The pair
(7', 7") would then give us an e-splitting of p on Ts; for Tp; contrary to our
assumption.) Thus we can compute ¢ (x) by simply finding any such 7' — a
process clearly recursive in G;. g

Now let j be the <-least element of L, such that for some p there are no
e-splittings of p on Tp; for T,;. Let P'= P be given by refining T, to
Ext(Ty,, o) for a o with fz,/(c)= p. Thus P'IF ¢ 5=+ G; or Ix¢p E(x) 1 . We will
now define a Q = P’ with L, = Ly = Lp such that Q F ¢ 51=1G; or Ax¢p F(x) 1.
The idea is to make To; an e-splitting tree for j, ie., Vo,7 ((o,7) give an
e-splitting on Ty, & o #;:7). We have, of course, already insured that if o =;; 7
then they do not give an e-splitting on Tp; and so not on Ty,; either. We can
then use ¢ ¢ to determine the path taken by G; modulo j, i.e., its projection on
To, and so G;.

To specify Q it suffices to appropriately define a T* C Tp; = T with infinitely
many k levels for every 0<k € L,. We define T* inductively level by level.
Suppose T*(o) is defined for o of length n. Let oo, 01,. . ., 02n_, list the strings of
length n and suppose that we have {7, l s < 2"} such that T*(a,) = T(7,) with the
7’s all of length m. Suppose we now need a k-level in T*. Consider first the case
j <k.Let m;+ m be the next k-level of T and set T*(a, * r)= T(7, *0™ *r) for
r =0,1. Next suppose k < j. We will define for r = 0,1 increasing strings p,., for
5,8 <2""" such that {f'(7, * pon), [ (7 * prn)) Where f=foii gives an e-
splitting on Tp; for Ty where k' is the < -immediate predecessor of k. Thus if
T*(o, * r) D T(7, * p,2»+1-1) we will have all the required splittings. We begin with
pr—1 = J. Suppose we have defined p, (., = u, and the next step is (s, t). We first
find 7o, 71 such that (f (7, * pe* 90), (7. * po* 1)) gives an e-splitting on Tp-;
for Tp. i with witness x. We then find an 7, such that Ext(Tp.;, 7, * p: * 1) forces
¢ J(x) to have some particular value. For definiteness say it differs from that
forced by 7, * po* no. We then set pog = to* Mo and pigr = w1 % 17.. We now
have p+_,=w, for r=0,1. Let m be minimal such that m,+Iithy,=
m;+1thv, is a k level of Tp,. We set

T*(os*r)=T(7, *v, *0™ xr).

This completes the construction of the splitting subtree T* of T and specifies
Q = P’ by requiring that Ty, = T*.
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Suppose now that 4 is €;-generic, Q € 4 and ¢ ¢ is total. We must show that
G, =r¢ 7. Assume inductively that we have found the p of level n such that
To;(p)C G;. To decide which of Ty,;(p*0), To;(p*1)C G, go to the first
k-level, m, in T* = To, after length fo.:(p) for a k <j. Let {, | s <27} list all
the elements o of length m with fo,(c)=p. Let g = fo,;. For each 55" < 2"
(g7'(a, *0), g7'(0, * 1)) gives an e-splitting on To,. Only one of the answers can
agree with ¢ and so one may be discarded as a possible beginning of G;. By
going through all such pairs we can eliminate either all the o, *0 or all the o, * 1
as possible beginnings of G;. Whichever r of 0 and 1 is not so eliminated gives as
our next step g (o, *r)=p *r C G;. O

This proof actually shows that for every P, e Ew and i € Ly thereisa Q=P
(with Lo = L) such that there is some x such that Q I ¢ {x)] or T, is an
e-splitting tree for some j < i. Given any e we can find a k such that for every A,
oe(x)) iff p2(y)| Vy ==x and in this case ¢ (x)= A (x). Applying the above
refinement procedure to any P, i € L, for k produces a Q such that for some x,
QF¢J(x)1 or T, is an k-splitting tree for i In the latter case it is clear that
QI (¢7(x)| for infinitely many x) and so Q I ¢ ¢ is total.

LEMMA 1.19. Totality of reducibilities. For e Ew, i € ¥ the sets D,,; =
{Q I QI (e is total) or for some x Q I+ d)f‘(x) 1} are dense. In fact if i € Ly,
30 (= D4,e,,' Wlth O = Pand LQ = Lp. D

ProposITION 1.20. #t-Reducibility. Let €.2 65 and all the D,.;. If 4 is
€.-generic and A =1 G (for any i) then A =,G,.

PrROOF. Say A =¢J. Let Q € 9N D, so Q IF¢7iis total. As G, is on To;
and ¢ 7 is total for every G on Ty; (as all such are G; for some €;-generic ) we
can find a k such that ¢ ¢:= ¢+ and ¢¥ is total for every G: To compute ¢ 7(x)
compute ¢ (x) and look for an initial segment of G not compatible with To,. If
the former converges first give its answer as output. If the latter, output 0. O

The point of this proposition is that it guarantees that our embeddings will
simultaneously be ones onto initial segments of the wtt and #-degrees.

THEOREM 1.21. If 4 is €.-generic then the mapiw deg,(G:) is an order
isomorphism onto an initial segment of the r-degrees for r = T, wit or tt.

PROOF. ¥-genericity guarantees that if i <j then G; =,G;. 6.-genericity
guarantees that if iX j then G; ZrG;. 6>-genericity guarantees that if G =1 G;
then G =z G; for some j < i while %,-genericity guarantees that if G =1 G; then
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G =, G;. Thus the G; give an initial segment for any degree relation between #t
and T. =

Our goal now is to extend this result to linear orderings £* of size N, with least
element 0 and the countable predecessor property. We begin by dividing £* up
as U,,, % where {Z£.} is a monotonic continuous sequence of countable
downward closed suborderings of £* with no last element. Our plan is to define
a class €s;2 %, of dense sets and a sequence of forcing notions 2., each
contained in the one generated for £, above, and corresponding ¥s-generic
filters 9. C %, such that the ¥, form a continuous monotonic sequence. Given
any such sequence {%,} we can then define the map i » deg(G,, ) for any a with
i € %,. This map, of course, then gives an isomorphism of £* onto an initial
segment of the degrees.

The idea is to put into 2., only those conditions associated with %, .; which
are already appropriately represented in 9,. To define the method of repre-
senting a P € .., by a P'€ P, we first need some notation.

DEerFINITION 1.22. Let P € ? be a notion of forcing appropriate to some &
and let ¢ be an < -preserving partial 1-1 map which maps L, onto L. C %, with
¢(0)=0.¢(P)isthe Q € ? with Lo = L, To; = Trsqy, Foji = Fre-'re-1ayand
foii = fre-ine-1y fOI I, j € Lo. In particular, we can restrict a condition P to a
smaller ordering L C L, in the obvious way by setting P[L = ¢(P) where
dom¢ =L and ¢ L =id[ L. Thus, for example, for every P and L C L,
P =P[L and so generic filters are closed under restrictions.

We can now define our ?,, 9, by induction. Let %, be the notion of forcing
defined above for Z,. Suppose 2, is defined. Let 94, be a €;s-generic filter for 2,
(we will verify later that one such exists by induction). Now let 2, ., be all those
conditions P in the notion of forcing for %, ., for which there isa P’ € ¥, and a
one-one partial map ¢ such that range ¢ = Ly, ¢ [ L. N Ly =id and ¢(P') = P.
Of course for a limit ordinal A we set ?, =U,,®, and 4 =U,., %..

The crucial step now is to define the class of dense sets needed to make
€s-genericity of 9, imply the existence of a €s-generic 4,1 C ... The density
of the Dy, (totality), D,;; (diagonalization) and D, (totality of reductions) in
P, +1 follow immediately from the corresponding genericity requirements on %,.
Problems arise only for the D,; and D,;.

Consider first an R € ?,., with witnesses R’ and ¢ as in the definition of
Posi. As R'Jdom¢p €9, we may as well assume that Lg =dom ¢. Let
{i,..,i;}=Le N&L =0 (Le NL)C Le and let {ji,...,ju} =0 (Lz — %)
be the rest of Lg-. Givenan i€ ¥%,,,—Lr wewishtofinda Q=R, Q€ ?,.,,
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with i € L,. If i <j, then as j, € %, and %, is downward closed, i € £, and so
there is no problem. We can simply choose any Q'=R', Q'€ ¥, with i € Lo..
We can then define ¢ by y(x)=x forx E Lo, x <iand ¥ ()= ¢(j) fort =n.
Q = ¥(Q")E P.sy by definition while i € Lo, and Q =R as required. If,
however, j,; <i there are problems.

Suppose first that i € ¥,. We can, of course, find a Q' = R’ with Q' € ¢, and
i € Lo . We cannot, however, extend ¢ to ¢ by setting (i) =i to get y(Q")= Q
as ¢ would then not preserve order or not be one-one. Thus we must also add on
to Lo new elements k,, ..., k. all > i to represent the elements of Lz — Z,. We
could then hope to set (x) = x for x <i, x € Lo and ¢ (k)= ¢(j;)fort=n to
get an element Q of %,.; with i € Lo. The requirement that Q =R thus
becomes one that 0(Q')= R’ where 6(k,}=j, t=n and 68(i,)=i for t=s.

Now if i€ %,.1—%. then we must insert an additional .k into the list
ki, ..., k. at the appropriate, say mth, place. To do this it suffices that there be
room for such an insertion since we can then just apply the extendibility property
of 9,. All these considerations lead to the definition of the Ds, ...z below. The
point is that if ¥.’s genericity requirements include the D5 m;r, then the D,
will be dense in P, ;.

Next suppose (with R, R’, ¢ as above) that we are given an e and wish to find
a Q =R, Q € ?,., which for some i € Lo, i < ¢(jn) forces [pe % is of the
same degree as G; or is not total]. We cannot simply take any Q' = R’ which for
some i € Lo, i < j,, forces [d)eG"m is of the same degree as G; or is not total] since
that i may not be in dom ¢. Indeed it may not be possible to extend ¢ to include
i in its domain (e.g. j; < i <j, but Ax(¢(j1)) < x < $(j2))). Thus we must find a
Q' € ¢, with possibly new elements ki, ..., k. € Lo to represent Lg — £, such
that for some i € Lo, i < k., O’IF(i)f“m = @, or is not total. The crucial point,
however, is that we must be able to define a 6 on all of Lo with 8(k.)= ¢(ji) to
give us a condition Q = 0(Q')= R such that Q € ?..,and Q |+ d>f""’m’ = Gy or
is not total. If the {k,,.. ., k.} form a final segment of L, then we can define 6 by
0(k.)=¢(j) and 6(x)=x for x € Lo, x <k,. The requirement that Q =
6(Q')= R then becomes that ¢(Q")= R’ where y(k.)=j,, t =n and §(i,) = i,
t=s.

These considerations lead to the definition of the Ds . r. below. Again if the
genericity requirements of ¥, force it to meet each Ds.mr. We will be able to
prove that the Ds,; are dense in P

We revert now to our original notation so that % is the notion of forcing
associated with a countable ordering Z.
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DEeFINITION 1.23.  Amalgamation. €5 consists of 4, plus for each i € &, each
finite LCY L={,<---<j,}, each m=n and each R € ? with L a final
segment of Lr the sets

Dstmir =1Q I Q is incompatible with R or
[O=R & (Fko<ki<++ <kn <k <kni <+ <kp in L)
(Jn, 1 <ko and if we define ¢(k.)=j, for 1=s=n and
¢(l)=1for I €Lz, then ¢(Q)=R)}

and for each e € w the sets

Dstmre ={0| Q is incompatible with R or
[Q=R & (3k,<k;<--+ <k, forming a final segment of L)
[j» < k: and if we define ¢ (k,)=j, for I=s=n and
¢(i)=1ifor i€ Lg — L then ¢(Q)=R & for some i € Lo, i <k,
QW ¢fkm is not total or ¢fk"‘ErGi]}.

The combinatorial fact needed to prove that these sets are dense is given by
the following:

LemmA 1.24. For any PE P with {i;<---<i}=L a final segment of
Ly ={js,...,jn}UL and any k,<--- <k, with i, <k, there is a Q =P with
{ki,..., k}C Lq such that $(Q)= P where ¢(k)=i fort=sand ¢ [ Lo — L =
id.

Proor. To refine P (without regard to extending L,) just means to give a
subtree of Tp; which has j and i-differentiating levels for each j,i € L, as the
trees for the other elements of L, and the associated maps are then all
determined by the projections associated with P. If in addition we wish to extend
L,toLo =L, U{ks,...,k}we mustdefine To. and the maps giving Toy,, t <s,
and the relations to the To;. If we are to have ¢ (Q) = P as well, then Ty, must
be a subtree of T,, and the To,, (and associated maps from T, ) must be given
by the maps from T,, to T,;. Thus to specify Q it suffices to properly define
T"=To,, and T' = Ty, (each subtree of T = Ty, ) and fo.«, = f as the rest of
the condition will be determined by the existing maps and. commutativity
requirements. A key point here is that fo i, is to be determined by composing f
with the projection from T’ = Tou, to Toy, by the map f&..,. Thus levels in T"
dedicated to i or j differentiations must involve splits which in T are not
congruent mod i,.

We begin by setting T'(J) = T"(J) = T(D). Suppose we have defined T’ and
f~' up through level n, Itha =n, T'(¢)=T(a), f(c)=1, T'(r)= T(B) and
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g '(a)=g '(B)*(’ for some y where g = f», ;. We define the next level of T
by cases:

(i) We need a j-level for j € L, — L. Let m, > lth a, Ith 8 be least such that m,
is a j-level of T. Now set, for r =0,1,

T'(o*r)=T(a*0"™ " %r),
T'(r*r)=T(B*0™"»xr)  and
flloxr)=1xr  (so f(tht)=1th o).

It is clear that ltho is a j-level in T’ and
g—l(a *O('"l_“h“)* r)= g-—l(B *Oml—lthB* f).

(ii) We need an i-level for i € L. Let m, > Ith «, Ith B be least such that it is an
i-level in T and let m,> m, be least such that it is an i;-level in T. Now set

T'(o*r)=T(a*0™"""xr),
T'(r#r)=T(B*0™™#xr+0™ ™)  and

fo*r)=7xr  (so f(thr)=1tho).

Again it is clear that Ith o is an i-level in T' and that

g*l(a *Omz-ltha* r) — g*l(B *Omlﬂthﬁ* r *0'"27"'1)_

(It is here that we see the effects of having to work within the < i,-differentiating
levels of T to get ones that are < i-differentiating in 7".)

(iii) We need a k;-level for ¢t = s. Let m, > Ith o, Ith 8 be the next i,-level inT.
Set T'(o *r)=T(a*0™ ™ *r) and f '(c*r)=1 (so IthaZrgf). Of course
Ith o is now a k,-level in T'. The twist in this case is that g '(a *0™ ""** r)=
g”'(B)*0” where y is the number of elements between Ith 8 and m, in the range
of g

We now define a condition Q by setting Lo = Ly U{ky,..., ki}, Tox, =T,
Toi, = T", fo..x, = f and all other trees and maps are given by the projections
determined in P and commutativity requirements. As To;, C Tp;, and the rest of
Q1 L, is defined by the projections in P it is clear that Q = P.

We next claim that if ¢(i)=i for i €L, — L and ¢ (k.) = in for m =s then
¢ (Q) = P. The definitions clearly show that T C Te, for I € Lp = Ly (o) and
that the maps between trees within L, — L or L are the restrictions of those in P.
Thus we need only check the maps between an element in L — L and one in L.
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By commutativity it suffices to check that Fy0),;, = Fox., = Fri,| Tox,. Now
by definition
Fou,= Foij,° Fori = Frii° Fox,-

But this is guaranteed to be Fp,; | Tox, by the part of our construction that says
that at infinitely many levels n (all except k, ones) we have for Ith o = n, 7, & and
B such that Toy, (0) = Tri, (@), To,(t)=Tri (B), fair(o)=1 and frl..(a)=
frii(B). The point here is that

foii°fourlo)=f 0ii(T) = f ;,limu(B) =f ;’,Ifmis(a )
Wthh giVCS FP,'},J}. r TQ,kS. [:I
LemMMA 1.25. The Dsy ir are each dense.

PROOF. Let Lo, mo, iy, Ro be given as in the definition of Ds;,..x and
consider any P'€ 2. If P’ is incompatible with Ro, P' € D5 m, i, Otherwise
let P be a common extension. Let L = {i; < -+ < i,} consist of all elements of L,
which are > any of L. Now choose ko< -+« < k., with ko > io, max L and such
that 3k, so, si(k, <k <k, and i, = jn,) and apply Lemma 1.24 to get a Q < P
with ¢(Q)=P where Vi =s(¢(k)=i) & ¢ L, — L =id. By the proof of
Lemma 1.11 we can get a Q'=Q with Lo =Ly U{ke, k, k,.;} such that
Q' I Lo=Q. Thus Q'=P=P', $(Q')=< P = P’ and Q' is our desired extension
of P'in D's 1 myio.Ro- a

LEMMA 1.26. The D5, mr. are each dense.

ProoF. Fix Loy, mo, R, and e, as in the definition of Dt . . and consider any
P'€ P. Again we need only consider the case where we have a common
extension P of P’and Ry. Let L ={i; < -+ <}, k;<-+- <k, and Q be as in the
proof of Lemma 1.25. Now let Q"= Q] (Lg, U LpU{k,,k,,...,k,}) where
iy = ji. Thus Q"= P', Ro and ¢(Q’)= R, where ¢ (k,)=ji and ¢ [ Lz,— L, = id.
Let s, = J, eo=c¢ and apply Lemma 1.16 to get a Q" = Q' with Lo-= Lo such
that for some i€ Ly, Q"F ¢fk,-ETG,. or d)f“i is not total. As Lo-= Lo,
{k, ..., k,} is a final segment of Lo-. Moreover, as Q"= Q', ¢(Q") = ¢(Q") =
R, as well. O

We now know that there are €s-generic %, for %,. The next step is an
induction on e. We have already motivated the proofs of density for the D,
D\, D;;, Ds.; and D,; in P, based on the €s-genericity of 4,. The new idea
needed is that although the additional requirements in s were designed to
prove these facts they also suffice to propagate themselves. The proof that the
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D5 mir are dense in P, is basically a straightforward application of the same
genericity requirement in 9, to the representative P' (and ¢) in %, of a
condition P € #,.... For the Ds,.r. One really needs pictures. Roughly
speaking, however, one first applies one instance of these requirements on level
a to move the representative ¢ (L) in P’ out to the end (making no use of the
initial segment requirement). One then applies another instance of these
requirements (this time we need the initial segment restriction as well) to
produce yet a further refinement which contains a copy of the representatives of
L, — %, in P' followed by these new elements as a final segment of the resulting
condition. This condition in ¥, then represents the required Q = P.

LEMMA 1.27. If 9, is €s-generic for P, then there is a 4,., which is €s-generic
for @a+1.

ProOF. We must show that each of the required sets is dense in P,...
Consider P € ?,.,. Let P'€ ?, and ¢ be as in the definition of #,.;.

(@) Do.. Let Q"= P’ be given by %o-genericity of 4,, i.e., Q'€ 4, N Dy,.
¢(Q)=¢(P)=P and ¢(Q') is clearly in D,,. Thus ¢(Q’) is the desired
element of #,., N D, , extending P. O

(b) D;;. Let L={j;<---<j,} be the final segment of P’ containing
¢ [Zan - L.

First suppose j € F,si— Fa. Let m be such that ¢(jm)<j<(jm+) and
choose Q' = P' with Q'€ %, N Dsy pir (i =j.). Thusif ¢’ is as in the definition
of Dsymir, @'(Q')= P'. Thus ¢¢'(Q')= ¢(P')= P. We now extend ¢’ to ¢
by setting (k) = j. Thus ¥(Q') = P, j € Lo+ and by definition (Q") € Pu+1.

Next suppose j € &,. Choose Q'= P’ with Q'€ ¥, N D54, with ¢’ as in
the definition of D5 o;p so that ¢'(Q’)= P'. Thus ¢¢'(Q")= ¢(P')= P. Now
choose Q"= Q' with Q"€ %, N D,;. Thus ¢¢'(Q")= P. Extend ¢¢’' to ¢ by
setting ¢(j) = j,s0 $(Q")= P, j € Lyonand Yy (Q") € P..:. M

(¢) D,.; for j% i. We may assume by (b) that i, j € L,. Choose Q' = P’ with
Q' €Y% NDysriyegy. P(QNVE Pavr, d(QN)=¢(P)=P and clearly
$(QYVF (5 = G;). In fact,

Note 1.28. If ¢(P')=P € P, and ¥ is a sentence mentioning only G; for
i €dom ¢ and P’ ¥ then by the definition of forcing ¢ (P') I ¢ (¥) where ¢ (¥)
is gotten by replacing each G; by Gy - U

(d) D;.;. We may assume by (b) that i € Ls. Let {j; <---<j,} =L be the
final segment of P’ containing ¢ '[Furi—ZL]. Choose Q'=P' with
Q' € 9% N Dsypmp. wWhere jn. = ¢7'(i). Again we let @', {k;<---<k,} and i’
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witness that Q'€ Dspmp. 50 that ¢¢'(Q)= P. We now extend ¢¢' to a ¢
defined on all of Lo by setting ¢(j)=j for j <k, j € Lo.. Thus ¢(Q") € P.n:
and (Q')= dd'(Q)=<P. Finally as Q'F.* is not total or é.*»=1G;,
$(Q") Ik ¢ s not total or ¢ 7= Gy, a
(€) Ds... Choose any Q' =P’ with Q'€ Dy,p-1yN %.. $(Q)= $(P)= P,
Q=¢(Q)VeEP,randas Q' d)f“’"‘“ is total or, for some x, Q' F ¢+ 'o(x) 1,
Q I ¢ &(x)is total or, for some x, G F GZ(x) 1 as required. d
(f) Ds.miz- We need only consider the case that R and P have a common
refinement S € #,.,. Let S', ¢ show that S € P,,,. Let L' ={ji,...,j.:} be the
final segment of Ls beginning with ¢ "'(j;) = ji. Let m’ be such that ¢ (j) = jn.
Let i'=i if i€%, and otherwise set i'=j;.. Now choose a Q'=S§,
Q' EY NDs;mes and let ¢’ ki,..., k.-, k' be the appropriate witnesses.
Thus ¢'(Q)= S's0 ¢¢'(Q')= S = R, P. Now choose any appropriately ordered
ki,... ko, k with i j, <k and extend ¢ to ¢ by setting ¢ (k’)= k.. Now
Q'=S"and so Y(QN=y¢(S)=¢(S)=S=R and y(Q’) € P..:.. Of course,
Ju, i < k1. Moreover if we define 8 by 8Lz — L =id and 8(ki.) = j. for t(s)
such that ¢ (j/i)) = j; then 6, k.y,. .., kiny and k witness that Y(Q')E D5 m.ir.
The only point left to verify is that 6($(Q'))=R. Now (04(Q')NILg =
(¢0'(Q")I Lgr andso as ¢¢'(Q")= R, 6(y(Q')) = R. (Verification: If i ELx — L
then (09)'(i)=y'67'(i))=y (i)=& '(i) while (¢")'(i)=(4") "¢ ()=
¢ '(i) since ¢ is the identity on §'— L' D ¢ '(Lx —L). If i EL then i = j; for
some s and ¢~ 07'(j,) = ¢ (ki) = ki, while (¢') ¢ 7'(i) = (&) (i) = ki)
d
() Dsimre. Again we let S=R, P,S'€ ¥, and ¢ witness S € #,., and
L'={¢7'G),..., 0 'G. ) ={ji,..., i C Ls. Note that at the cost of replacing
S’ with S’'[dom ¢ we can assume that Ls. = dom ¢. Now choose Q'= S’ with
Q' €% NDs,mr. Where Le= ¢ '(Lz), L'=¢7'(L)={j,...,j.} and R’ =
S'ILg (s0o ¢(R')=R). Let ¢’ and ki,...,k, be the required witnesses:
¢'(k)=j.=¢7'(.), ¢'(i)=1i for i € Ly — L" and ¢'(Q')= R’. Next let

L"=¢_1($¢x+1“ga)U{k{,...,k,,.}, LR~=L5'U{k{,...,k,I,} and R”zo,rLR"

(so ¢'(Q’'I Lg-)= R’). Next choose Q"= Q' with Q"€ 4, N D5 r-. Where
k. is the m"th element of L". Let {i},...,i}=¢ (Lurr— L), {ir,..., 0} =
Ls N (&ori— L) and let @7, iY,...,i%, kY,..., k and io € Lo- be the witnesses
for Q":¢"(iY)=i;, ¢"(kD)=k.,, ¢"({)=i for IiELgp—-L"=
Ls — ¢ (Lari— %) and ¢"(Q")= R". We can now define a P" € P,., with a
witness ¢ such that ¢(Q")= P" by setting ¢(i)=i for i <ii, ¢(i¥)=1i, and
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(k%) = k, where we can choose any ki,. .., k, in £..,— Z. above all elements
of Ls. We claim that P"= S = P and that P"€ Ds; . r. as required:

(i) P"=S = P: We know that ¢"(Q")=R"=S"and s0o ¢¢"(Q")= ¢(S') =
S. Thus it suffices to prove that ¢é" =  on ¢ '(Ls). If i € L, i € &, (ie., i <i})
then all of ¢, ¢ and ¢" are the identity on i. Consider then some i € Ls N
(L1 — L), () =1 but ¢@"(i%) = P (i) = i, as well.

(i) As Q"IF(¢.%=1G, oris not total), $(Q") = P" I (¢.*» = G, or is not
total).

(iii) Let ¢'(k;)=j;, ¢'(i)=1i for i € Lg — L. We must show that y'(P")= R
to finish the verification.

The preimages of '(P")[ Lz in Q" are given by j, » k' for €L, i» i for
i€E(Lx —L)NZ, and i, » i’ for i € (Lr — L)— Z.. We claim that ¢¢'¢" is the
inverse of this map so that ¢¢'¢"(Q")| Lr = ¢'(P")I Lr:

(1) ¢¢'¢" (k)= ¢d'(k)=¢(j)=j: for  EL.

2) ¢d'¢"(i)=¢¢'(i) for i ELp-—L"= Lo~ ¢ (Larr— %)

=¢(i)if iELx—L'=¢ '(R)—¢ (L) as well

=iif i€,
thus ¢dp’'@d"(i)=1i if all of these conditions hold: i€ Ls N Lg N
L= ¢ (Lai—L)— ¢ (L) but Le CLs and Lep=¢ '(Lr)C % so we
need i€ELe— ¢ (Lari— Fu)— ¢ '(L). Now ¢ =id on Lx N %, so

Le—¢ (Lari— &)=L N Z,.

Thus we need i € Ly N %, — ¢ '(L) but again on %,, ¢’ = id and so this is the
same as i €(Lg ~L)N ..
(3) ¢'d"(i") = '(i’) for all s =1
= (i) for i€ Ly~ L'
=i for i ELs — L,
50 ¢¢'d"(i") =i, if i, ELe — L — %
Finally we have ¢"(Q")=R"= Q'] Lg- and so ¢'¢"(Q")=¢'(Q'[ Lr)=R’
and at last ¢¢'¢"(Q")= ¢(R")=R. O

THEOREM 1.29. If £* is a linear ordering (with least element) of size R, with
the countable predecessor property, then there are G; for i € £* such that the G,
give initial segments of the T, wit and tt degrees isomorphic to £*.

ProoF. Define %,, ?. and 9. as described above. (Note that % =
Uear % C 2, = U, ., P. is s-generic by the monotonicity of the sequence and
the ¥s-genericity of each %,, @« <A.) The G; are then given also as described
above (G = Upce Tri (D), Uacw, % = 9). As in the countable case the €.
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genericity of each ¥, guarantees that the G, i € £,, give an initial segment of

each type of degree isomorphic to .. Thus their union gives one isomorphic to
L. (]

2. Countable upper semi-lattices

Our goal now is to prove that every u.s.l. with 0 of size N, satisfying the
countable predecessor property (c.p.p.) is isomorphic to an initial segment of the
Turing (# and wtt) degrees. In outline we will follow the path laid down for the
case of linear orderings in Section 1. This section gives a presentation of the
countable case designed for our extension process. Except for not having fixed a
greatest element in our approximations and so having trees for each element of
the (u.s.) lattice rather than one master tree we essentially follow Lerman [10].
Other than rearranging some of the definitions the only difference comes in
expanding conditions to add on new elements (density of the D,;) and the
related requirements on the representations of £.

The major difference between the case of countable linear orderings (or
distributive lattices) and arbitrary (countable) lattices or upper semi-lattices
appears in the coding scheme used to guarantee that if i <j then G, =,;G;. In
Section 1 (and similarly for distributive lattices as in Lachlan [7]) the ordering of
L, C % is represented by inclusion on a class of sets (the ranges of the functions
frii where [ is the < -largest element of L,). Of course one cannot represent a
non-distributive lattice in this way. [Another view of this problem is presented in
Lachlan [7]. The reductions of G: to G; for i <j given in Section 1 are in fact
m — 1 reductions. Thus if i < j then G; =.. G; and so the map i » deg,. (G,) gives
an embedding into the m-degrees (actually to an initial segment of the
m-degrees). There are, however, no such embeddings of non-distributive
lattices.] Thus we must use some more complicated [at least #] coding to reflect
the ordering of £ in the general case.

We use Lerman’s u.s.l. tables:

DEerFINITION 2.1.  U.S.L. tables. Let £ be a finite u.s.l. with 0 (and hence a
lattice with 1).
(a) ®C 0* is an (w.s.l) table for & iff
(i) Va,BEB (a(0)=p(0),
(i) Va,BEB Vx,y EL[x <y & a(y)=B(y)— a(x)=B(x)],
(i) Ve, BEB Vx,y,zEFxvy=z & a(x)=B(x) &
a(y)=B(y) = a(z)=B(2)),
(iv) Vx,y €EZ[xXy—>3a, B €O (a(y)=B(y) & a(x)# B(x))].
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If O satisfies (i)-(iii) but not necessarily (iv) we call it a positive u.s.l. table for
Z.

(b) If £'C £ and O is a table for ¥ then ® ] ¥’ is the obvious table for ¥’ (i.e.
{al %'|a €O} 1f x €FL we write O] x for {a(x)|a €O}

(c) Without loss of generality we may assume that & (0) = 0 for every a € 0.

(d) If &, B €O and x € £ we say that « is congruent to 8 modulo x, a =, 83,
iff a(x)=B(x).

Note that every finite u.s.l. & with 0 has a finite (u.s.l.) table (Lerman [10,
Appendix B.2.2]). Our plan is to use trees with branchings given by a table @ for
& so that the listed requirements will guarantee that (i) Go=rJ; (i) x <
y— G, =1G,; (li)x vy =2z G, P G, =rG,; and (iv) allow for the possibil-
ity that x X y = G, Z1G,. Before we can define the required trees, however, we
must first handle infimum requirements and then allow for the need to extend
the finite lattices in a condition within the table itself.

DEFINITION 2.2. Sequential tables.
(a) If ® and V¥ are tables for ¥ then ¥ extends © if @C V¥ and V¥ is an
admissible extension of ©,0 C, V¥, if in addition

Ve eV IBEOVYEOVYxEY [a=.y—a=8]

(Note that this relation is transitive.)

(b) © ={0O, ' i <w} is a sequential (weakly homogeneous) table for £ iff

() ViEow (6 is a finite table for ¥).

(i) ViEw (0;C.0..).

(i) ViEw Va,BED, Vx,y,2EL [xray=z & a=.—>Tv,7,7:€
0 (a = Y=, Y1=72=,B)]

(iv) Vi Eo Yao, a1, Bo, BED: [Vx € Flav=.a:— Bo=:B:)—3IB, B:E
(S afo,fl,fz 10, > 0., (fo(an) =B, & f0(01)= Bi & fl(ao)= B & fx(al) =
B: & ()= B & fr(@)=B: & Vy EL Ve, B €O, (a =8 fola)=fB) &
fl@)=fB) & fia)=:fAB))].

Condition (iii) is designed to handle A requirements and (iv), the weak
homogeneity property, plays a more technical role connected to initial segment
requirements that need not concern us. We should point out, however, that (iv)
is taken from Lerman [9, p. 268] rather than Lerman [10, p. 278] or Lachlan and
Lebeuf [8, p. 289] since one actually needs three functions rather than two.

DEeFINITION 2.3.  Extendible tables.
(a) If ® and ¥ are tables for £ then p = {p, | x € £} is an isomorphism of @
onto ¥, p : @ ¥, if each p, is a recursive one-one function with recursive range
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such that {p(a)l a € 0} =¥ where by definition (p(a))(x) = p. (e (x)) for every
x € % If there is such a p we say that ® and V¥ are isomorphic, ® =¥, and write
p[®)=W¥. (Note that isomorphisms preserve congruence relations (i.e.,
a =8 pla)=.p(B))

(b) A sequential table {®;} for & is extendible if it satifies the following
conditions:

(v) For any finite £’ 2 ¥ and any table ¥ for £’ there is a j € w, a table ¥*

for #' and a p : ¥ W¥* so that the following diagram is correct:

v
plz

VY L C, 0,

(vi) For every i <j € w, every finite £' D %, every table ¥ for £’ such that
Y I.Z C.0; and every table ¥* for &' such that ¥ C, ¥*, thereisa k >j and a
p:¢*= ¢ such that p(a)=ca for a EV, Vx EL' Vn[nE V| x—p.(n)>j]
and such that the following diagram commutes:

\If—) ‘Prg (—>a @i
a'l a)
P* 0,
piz a
\I'+—‘>\If+ [gc_)a ®k

(c) A sequential table 0 = {0, l I E w} is recursive if there is a recursive
function giving canonical indices for the @; (as £ is finite we may choose any
identification with a subset of w to formally define recursiveness on the
appropriate space).

(d) If ® is a sequential table for £ (ie., O(@)=0;) we write O] %' =
{®, Iff’liEw} and O] x ={0, leiEw} for #'C ¥ and x € . (Note that
O] x is thus a map o — [w]™)

(e) If O is a sequential table for £ and ¥ is one for £’ 2 ¥ then ¥ refines O it
there is a recursive h such that ¥, [ £ C, O,,.

We can now define the types of trees that will make up our foreing conditions.
The idea is that given a sequential table © for ¥ the tree appropriate for an
x €EZ is a O x-tree. The projections F between branches are then explicitly
given by the tables. If the tree for x follows the path along a (x) then the tree for
y < x follows the one along a(y). Of course Definition 2.1(ii) guarantees that
this is well defined, i.e., knowing «(x) is sufficient to determine a(y) — one
needn’t know «a (i.e., the path on the tree for 1¢).
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DEFINITION 2.4. The notion of forcing. Let £ be a countable u.s.l. with least
element 0. We define the notion of forcing P appropriate to £ as follows.

(a) A condition P consists of a finite sub u.s). L, of £ containing 0; a
recursive extendible sequential table @, = {0, | i€w}for Lp;foreach x EL,
a uniform recursive O, [ x-tree and a commutative system of recursive maps
Fe., :[T.]—|T,] for each y < x in &, which are induced by @ in the sense that
if G, = T,[g] then F;.,[G:]= G, is T,[h] where h(n)= a(y) for any a €0,
such that a(x)=g(n) (this is well defined by Definition 2.1(ii)).

(b) A condition Q refines one P, Q =P, if Lo D Ls, To. C Te, for x € L,,
FO,x.y = FP.x.y r[TOXJ for y<zx in Le.

(¢) The restriction of Pto L C L, P| L, is the condition Q such that L, = L,
®o=0;L, To,=Ts, and Fy,, = Fp., for x,y €L.

The typical method for specifying a refinement Q of P with L, = L, = L and
B, = 0, =0 is to give an appropriate subtree of T = T, (where we use [ to
denote the greatest element of ¥) and then take the “projections” as the
subtrees of Tr, for x € £. Recall that in general we may specify a subtree T* of
the (uniform) @f1-tree T by giving a (uniform) O[1-tree $ and setting
T*=ToS. In order for the projections to be well defined and generate a
refinement of P, S must satisfy an extra condition.

DEFINITION 2.5. Subtrees and projections. Let © be a sequential table for £
and T be a uniform O [ 1-tree.

(@ If x<y, z in & and o € Fe,, 7 € Fer. We say that o is congruent to 7
modx,y,z, o0=,,.7, if for each n<ltho, Ithr and each o, B €0, with
a(y)=oa(n)and B(z)= 7(n) we have that a(x)=B(x),ie., a =B. If y and z
are clear from the context we will frequently write this as o =,7.

(b) If x <y in £ and o € Pey, then the y-projection of o on x, f,. (), is that
T € o1, with the same length as o such that o =, 7 (i.e.,, 0 =,,,.7). Againif y is
clear from the context we often omit it and call 7 the projection of o on x, f, (o).

(c) A uniform O] 1-tree, S, is distinguished if

VX EL VYo,7E Fon [0 =.7 & S(a)=,5(1)].

(d) 1f ®, L and T come from a condition P (i.e., ® =0p, L =L, and T = T;;)
and S is a distinguished © [ 1-tree we can define a condition Q = S(P)= P by
setting Lo =L, @o =0, Fo., = Fp.,[[To.] and To. = Te,°S, where we
define S, by S, (o) =f.(S(7)) for any 7 € Fe; such that f.(7)=o0. S, is well
defined since S is distinguished. Similarly, the maps Fo, are induced by ©, = 0
as required.
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(e) With this notation we can describe the functions Fp,, by noting that
Frsy (Tox[g]) = Te, (081

The simplest example of this type of refinement is given by taking To S to be
the extension subtree of T above some o € Pop.

DEFINITION 2.6. Extension trees. With notation as above we let Ext(T, o) for
0 € Pon be TS where S(7)= o * r which is clearly a distinguished uniform
O 1-tree.

We can now begin to list the dense sets € that guarantee that any €-generic
filter gives our required embedding.

DerINITION 2.7, Totality. 4o consists of the sets Dy, ={P llth(Tp,x (d)=n
for each x € L;}.

LemMa 2.8. Each D, is dense.

Proor. Let PE€ 2. Let Q = P be defined as in Definition 2.5(a) by setting
To, = Ext(Trs, o) for any o € Fen such thatIth f, (¢)= n foreveryx € L,. 0O

Lemma 2.9. If O is a recursive sequential table for ¥ and &' is a finite
extension of X then there is a recursive sequential table ¥ for &' which refines ©.

Proor. This is a special case of Theorem 4.1 whose statement and proof we
defer. O

DEFINITION 2.10.  Extendibility. €, contains %, and the sets D,, =
{PleLp} for x € £

LemMmA 2.11. Each D, is dense.

ProofF. Consider P € ? and x € £ — Lp. Let L be the (finite) sub u.s.l. of £
generated by Lp and x. By Lemma 2.9 we can choose ¥ to be a recursive
sequential table for L refining ®, via the recursive function k. We will define a
Q =P with Lo =L and @, = V. The trees To, for y € Lo — Ly will just be the
¥y-identity trees. For x € L, we define a ¥lx-tree To. C Tp, : Tox (D) =
Tp. (0*”) and if To. (o) is defined as Ty, (r) with Itho = n, Ith7 = h(n) and
PEWV,[x COumlx then Tox(o *i)= Tp, (7 *i"""V7"™), It is easy to see from
the definition of ¥ refining @ that the maps Fo., for y <x in L, induced by ¥
are precisely the restrictions of Fp,, to [To.]. Thus Q = P as required. O

Now note that if 4 is €;-generic we can naturally define functions G, for each
x€2 as U{Tn. (@)[P €Y & x€Lp}, ie, 4 (n)=Te.(B)(n) for any
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PE YN D,,ND,,. The G, are well defined by the compatibility requirement
on generic filters and are total for each x € £ by the density of the D, , and D, ..
Now as in Section 1 if y < x then G, =+ G, viaany Fp,, with PE Y, x,y € L.
Moreover if x vy =z then G, P G, = G,. Of course G, P G, =:G, by our
first observation. To see that G, =7 G, @ G, consider any P € ¢ with x,y,z €
L, so that G, €[Ts.], G, €[Ts,] and G, €[T;.]. Suppose that G, = Tr.[g],
G, = Tr,[g] and G, = Tr.[g.}. Thus g =f..g. and g, =f.,g. where the
projections are defined by ®,. Now by clause (iii) of Definition 2.1, f,.g. and
f.,8: uniquely determine g,. As the trees are recursive we can therefore
calculate G, from G, @ G,. Thus any %,-generic ¢ determines a map ¥ — 9
given by x » deg(G;) which preserves = and v. We must now specify-additional
collections of dense sets which will make this mapping one-one and its range an
initial segment of 9. We define forcing as before.

DErFINITION 2.12.  Forcing. For any P € 2 and any sentence ¢(G,,, ..., G,)
of arithmetic with function parameters G, x; € L, we say that P forces ¢, P I+ ¢,
if for any G on Ty, ¢(G.,...,G.,) is true where G, = Fy, ., [G].

DEFINITION 2.13.  Diagonalization. €, contains €, and for every e € w,
%,y € Z the sets Ds.., ={Q |xXy—> QF =1 (%= G,

LEMMA 2.14. The D,.,, are dense and indeed we can find a Q =P as
required with Lo = Ly and @q = 0Op.

ProOF. This is essentially the same as the proof of Lemma 1.14. Alterna-
tively assume x,y € L, and let T = Tp;. Lemma VII.2.5 of Lerman [10] gives a
T* C T via a distinguished tree S (an extension tree) such that the condition Q
determined by T* as in Definition 2.5(d) is as required. 1

DEFINITION 2.15.  Initial segments. 65 contains 4, and foreache €Ew, x EZL
the sets Ds., ={Q lfor some y <x, Q F(¢?J~ is not total or ¢7-=7G,)}.

LEMMA 2.16. The D;,., are dense. Indeed if e € w and x € Ly, we can find a
O <Pin D3,¢,x Wlth LQ = Lp and @Q = @p.

PrROOF. Let PEP, e €Ew and x € L, be given. Let T = Tp,. Section 3 of
chapter VII of Lerman {10] is entirely devoted to the proof that (with very slight
notational changes) there is a T* C T (given by a distinguished tree S) such that
the Q = P with Lo = Lp, ©, = O, specified by setting T* = To; is as required.

O

We now have enough dense sets to embed £ as an initial segment of 9.
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THEOREM 2.17. If G is €s-generic then the mapping x +» deg(G.) gives an u.s.L.
isomorphism of £ onto an initial segment of 9.

PrOOF. €;-genericity guarantees that the map is an u.s.l. homomorphism;
%.-genericity that it is one-one; and €s-genericity that it is it is onto an initial
segment.

ReEMARK 1.18. As the Tp, for P € ¢, x € ¥ are finitely branching with the
branching given recursively we can recursively code the G, as sets so as to make
it possible to consider # reducibilities as well. One can then easily define €, to
contain the appropriate sets D, .. and prove their density as in Section 1 to get
the same result for # and wet-reducibilities. We omit the details and will
continue to omit them in the next section.

3. Size N, upper semi-lattices

We now wish to extend an embedding as in Section 2 to an u.s.l. £* of size N,
with 0 and the countable predecessor property. Let us try to follow the
procedure used for linear orderings in Section 1. Thus we first divide £* up into
a monotonic continuous sequence {&,} of downward closed sub u.s.l.’s so that
£* =, <x, %.. We then hope to define a class of dense sets s and a sequence
of forcing notions %, each contained in the one appropriate for £, and a
corresponding continuous sequence of generic filters ¥, C %,. Again we want
P.+1 to contain conditions which are represented in %,.

DerFINITION 3.1.  Isomorphisms. Let P € P, a notion of forcing appropriate to
some countable u.s.l. £ with 0, and let ¢ be a partial u.s.l. monomorphism which
maps L, onto some L C ¥ with ¢(0)=0. ¢(P) is the condition Q € P with
Lo=L, To.=Trs ), Fory=Frs'meioy for x,y EL and B¢ = ¢(0r)
where $(8,)(n)= (O (n)={$(a)|a €O+ (n)} and ¢(a)(x)=a(¢ (%))
for x € L.

There are now, however, a number of difficulties with defining %..., as simply
those conditions P for which there is a P'E€ %, and a ¢ with rg¢ =L, and
¢ | £. N Lp =id such that ¢(P") = P. The first problem arises in trying to prove
the extendibility lemma, i.e., the density of the D, .. There just may not be any
Ly C %o, say, which is isomorphic to some L C &;. Thus we could never hope to
get a condition P € ?, with L C Ls. The obvious solution is to require that the
%. be elementary submodels of £*.

Unfortunately this refinement does not seem to suffice to prove the initial
segment lemma — the density of the D;.,. To understand the difficulty suppose
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we have a P € P, represented by P'€ % with ¢(P')=P. We are given an
x € L — %, and an e € w and wish to refine P to a Q which forces ¢ -, if total,
to be of the same degree as G, for some y < x, y € Lo. To do this we need a
Q'=P,Q €% and a ¢, with ¢:(Q") = Q such that Q' forces qbeG"’"“’, if total,
to be of the same degree as G 41, for some y < x, y € Lo. The trouble is that
each possible candidate z for ¢7'(x) (i.e., those at least bearing the same
relationship to the elements of Lr N %, that x does) could well have elements
below it (in %,) which are not below x. (It is easy enough to arrange such a
situation.) Moreover it could also be that any condition Q' € %, which decides
the degree of ¢ -, for any such z, forces it to be that of some G, with y Ix. For
such a situation there can be no Q'€ %, with a ¢, giving $,(Q')=Q € P, as
required.

The solution is to represent conditions P € P, only via maps ¢ and conditions
P’ € 4 such that no extraneous elements in %, are below ¢ '(x) for any
x € Lp — %,. As there may be no such representatives in #; we must add them
on. One cannot simply put in more and more elements of £* since this would
make ¥, uncountable. Thus we will extend £* via a saturation process that puts
in isomorphic copies of all possible finite extensions L’ of any finite sub u.s.
lattices L which add below the elements of L' only elements generated by
joining elements of L’ with ones below elements of L. These elements must exist
and cannot ruin our representation if the ordering is defined in the natural way
(freely). Of course if we expect an embedding of our extension of £* as an initial
segment of & to include one of £* we must make sure that it is an end extension
as well.

We hope that this discussion in some way motivates the following definitions
and lemmas.

DEFINITION 3.2.  Special extensions. Let £ be an u.s.l. and £, £ each a finite
sub u.s.l. of £. We say that %, is a special extension of £o in &, %o Csp, Li(&Z), if

() % is an end-extension of Lo in &, LoCena £(X), ie., VxEL VyE
L (x<y—->x€L).

(ii) Vx Edcle(Fo) Vo € L (x <v— 3w € Lo (x < w < v))where dcle (£o) =
yeg I Ax € Loy = x)} is the downward closure of %, in £.

(iii) For every x in dcle (&), there is a largest x, € %1, denoted by ILi(x), with
x; < x and a largest x, € dclg (Zo), denoted by Ilo(x) with x, < x and moreover
x = Ily(x) v IL(x).

(iv) If x, y, z €dcle(&1) and x v y = z then [1y(z) and I1;(z) can be generated
from the II;(x) and IL (y) by closing downward and under joins in %, or in
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dcle (%). To be more precise we first define the closure process S; » for any
us.l’s L and £ (with possibly non-empty intersection) on subsets X of L U %
by Si«(X)=U.,S«(X) where S?4(X)=X and

X)) ={tELUZL|ArsESIAX)[r5t EL&t=,r V5]
or Ans €SI AXMrs,tEL & t=¢rv sl

If we now set S(X)= S, aa,)(X) we can state this requirement as
Io(z), i(z) € S ({To(x), I (x), To(y ), ILi(y )})-

(Note that if L is finite (as it is here with L = L;) then S, ¢(X)= SI «(X) for
some n since the sequence can continue to increase only by adding on new
elements of L.)

Before constructing the “specially saturated” extension of our given %, we
prove some simple facts about special extensions that we will need later.

LeMMA 3.3. Transitivity of C,,. If $.Cop Li(¥) and £, C,, L(¥F) then
Fo Cop LA Z).

PrROOF. (i) That %, C..a £ is clear as is (ii) by applying it for both given
extensions.

(iii) Let IT;, IT? be the projection functions for £, C % and £, C %, respec-
tively. To get the required functions for %, C £, we simply set I[Io(x) = TI[I5(x)
and ITy(x) = ITi(x). That II,(x) is as required is clear. For II, consider any y < x,
yEdad%, x€dc¥, y<Iix) and so y<ILIl(x). Of course x=
M(x)vIL(x) since x =II5(x)v IE(x) = [II(x) v IITE(x) v [T}(x)  and
ILIIo(x ) < ITi(x ) = ITi(x) and TIIT3(x) = Io(x).

(iv) Given any x vy =z in dcl¥, argue by induction that for every ¢
generated by S, for £, C,, &, from X, = {II}(x), [I(y)} one gets ¢, if t € £,, and
IT}(¢t), if t €dcl &y, in the generation process S associated with %, C %, from
{ILi(x),IL;(y)} = X. As IT(z) € Sy(x.) this suffices to show that II;(z) € S(X).
Begin with S:4(X2) = {ITi(x), IT(y )}. Of course it suffices to consider the IT}(x):

ITi(x) = ILi(x) € So(X);
III(x ) = Ig(x ) € So(X);
and ILIG(x)<Mi(x) and is in £ C % and so in Si(X). Suppose we have
LSES.(X2). If ,sE€EY,, t€EY, and t<rvs, then of course t € S(X) as

r,s € S(X) by induction. If r,s €dcl % then IIi(r),ITi(s) are in S(X) by
induction. As the generation process S; for £, C % is contained in S,
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I}(r v s)E€ S(X). Thus if t <r v s then IT;(t) <IIi(r v 5) and so ITi(¢) € S(X) as
well. O

LemMMA 3.4. Closure. If £,C,, £(¥) and £ C L. C &L with £, finite then
there is a finite £:C & such that £, C ¥y and %o C,, L1(ZLn).

Proor. Let II; be the given projection functions in £. Let &; be the (u.s.l.)
closure of £, UTI,[%,], i.e., those elements which are the join of one, x', in %,
and one, x”, in [fdcle, &) = [ L,] C dele (Fo). Properties (i) and (ii) of the
definition of %, C,, (%) hold for any £, 2 &, with &, C & by % Cp Li(¥).
As & is finite one can define for x € dcle, £,

I(x)=max{y <x |y Edcly, £} and IIj(x)=max{y <x |y € £} =1I(x).

We must show for (iii) that x = IT5(x) v [Ti(x ). Say that x € dcle, £ and as above
x =x'vx". Of course x"EI[L]Cdcle, ¥ and so x"<Ilyx). x’' Edcle, &,
and so x'=II(x') v I1;(x') with Ily(x") € &£5. Thus Ily(x")=1Ils(x). As ITi(x") =
ITi(x) as well we see that x = x'v x" =1IIy(x) v I1i(x) as required.

Finally we must verify (iv). Let S’ be the generation process for £, C %, (%)
and S that for £, C %, (£). Suppose x vy =z in ¥ Let X' = {IIi(x), ILi(y)},
X ={IL (x),1L (y)}. We need to show that IIi(z) € S'({ITi(x), ITi(y)}). We claim
that S(X)N £ C §'(X"). As II;(z) € S(X) which is downward closed in dcle £,
and in %, and II(z)<II;(2), this will clearly suffice. The first point is that
S(X)= S(X") where

X" = {IL (x ), L ("), L (y ), TL (y )}

and x', x", y', y” are chosen as in the definition of x and y being members of £.
As II; (x"), I; (x") < IL;(x) and similarly for y, it is clear that X" C S(X) and so
that $(X")C S(X). That II;(x) and IL (y) € S(X") follows from the facts that
x=x'vx"and y =y'v y"via (iv) of % Cs ZLi(¥). We now prove by induction
that if t € S(X")Ndcle %, then 3t'€ S'(x")Ndcle, Lo(t = ¢') and that if t €
S(X"YN &, then t € S'(X")N Z1. As §'(X’) is downward closed in dcle, Z, this
will prove the claim. For n =0 note first that IL(x"), IL(x")<ILi(x)=
IIi(x) € S'(X’) and so TL;(x"), I1,(x") € §'(X") and similarly for y. Next Ily(x") <
Ii(x) and I(x")<x"€Edcle, £ and so x"<Ilp(x) as well. Thus
IMa(x), Ho(x") € S'(x’) and similarly for y.

Suppose now that r,s € S,(X")N £, and t <r v s, t € £\. Then by induction
r,s € S'(X') and so t € S'(X"). Finally, if r,s € S, (X") N dcle L then by induc-
tion there are r',s' € S'(X')Ndclg, Lowithr=r'ands=s". If t =r v s (and so
tE S (X)) thent =r'v s’ € §'(X')Ndclg, & as required. d
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Lemma 3.5. If £ is a size Ny u.s.l. with O and the c.p.p. then it has an end
extension £* (of size N, with 0 and the c.p.p.) which can be given as the union of a
continuous monotonic sequence of downward closed sub u.s.l’s £, which are
saturated, i.e., for every finite sub u.s.l. Lo of £. ., and every isomorphism type of a
finite u.s.l. end extension of Lo there is an LiC Loy with Li— Lo C Loii— %
which realizes this type over L, such that LoC, Li(Z..1). (For notational
convenience we let ¥, = and allow « to be —1 as well)

Proor. We really only need to be able to construct extensions for one L, and
isomorphism type at a time for we can then dovetail to get the desired result.
Thus we first need a one step extension.

SUBLEMMA 3.6. If L, is a finite sub u.s.l. of an & as above and a finite
isomorphism type over L, is given, then there is an end extension £' of £ (of size
N; with 0 and the c.p.p.) with an L, C £’ realizing the given type over L, such that
Lo C,, L:i(&").

PrROOF. We begin with any L, realizing the given type over L, with elements
of L,— L, denoted by symbols not used in £ We use S =S, ¢ to define the
elements of &,

%' ={$(X)| X a finite non-empty subset of L, U ¥},
The u.s.l. structure on £’ is given by
S(X)=S(Y) & S(X)CS(Y)

and
SX)vS(Y)=S(XUY).

One must now check that this defines an u.s.1. structure. Of course S({0}) = {0} is
the 0 of ¥ and = defines a partial order. It is clear that S(X),S(Y)C
S(X U Y). Finally, if $(X), S(Y)C S(Z)then X, Y C S(Z)andso S(X U Y)C
S(Z) as required.

To formally guarantee that & C ¥’ we identify S({x}) with x for x € &. Again
we must check that this is an u.s.l. isomorphism. The point here is that for
X C %, S(X)=dcle (v X) by definition of S and the fact that LoCena L,. Thus
x<y > SENCSEyh; x#y > SExD#SAy}); and xvy=2z= S({xhv
Sqy) = SUx y) is in fact S{z)).

We must now verify that £’ has all the required properties.

() LCua 2T SX)CS{y)), y €L then X C S(X)Cdclef{y}. Thus X C &£
and S(X)=S{v X}).
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(i) £’ has the c.p.p.: The point here is that for every X, S(X) is countable.
(X = So(X) is finite and if S.(X) is countable then S,./(X) only adds on
elements of L, (which is finite) or ones of £ below the join of two such in S, (X).
As £ has the c.p.p. this set is also countable.) As S(Y)=S(X) > Y C S(X)
and Y is finite there can then be only countably many such elements.

(iii) LT = {S{x}'x € L} C ¥ realizes the same type over L, as does L;:

(@) If x <y in L, then x € S,({y}) and so S{x})C S({y}).

(b) fxvy=zinL,thenx,y € Si({z})andso S{x}v Sy} =S{x,yPh=
S({z}). On the other hand z € S({x, y}) and so S{z})=S{x}) v S{y}).

(c) If xXy are in L, we must show that S({x})Z S({y}). We claim that
S{y)=T=del,{(y)U{x EL|(IzELy)(z <y in Ly and x < z in £)}. Now
y € T C S:{y} and so we need only show by induction that S, ({y}) C T for n > 0.
The point here is first that if ,s E£LNT and t<rvs then t €T and second
that if ,s€EL,NT and t<rvs isin L, then t €ET. Thus if xXy is in L,
xZ S({y}h.

We can now identify L} with L,.

(iv) LoCs Li(£'): We verify the four clauses in Definition 3.2.

(a) Lo Cena Li(Z') since &£ Cend AR

(b) Suppose  S(X)E dcle(Lo) =dcle(Lo). Then S(X)=S({x}) with
x EdcleLo. If S{x}) C S{y}) with y € L, then x E dcl, {y} or (3z € Lo)(z <vr,y
& x <g2). The second possibility is exactly the one required. If, however,
x €dcl {y}, then x EL, (and x <y). As x < u for some u € L, as well and
LiC¥Ceafiand LiNEL = L, x € Loand it already is the required element.

(c) Suppose S(X)E dcle (L)) so S(X)C S({y}) for some y €L,. As L, is
finite there is clearly a largest x; € L, below S(X). Set IL(S(X)) = x, = S{x1}).
We have established above that

S{yh=del,({yhuix e =Yl(Elz EL)(z <,y & x<g2)}

Now argue by induction that for n = 1, S, (X) is the union of some subset of L,
and a finite number of downward cones in dcle(Lo) (i.e., sets of the form
{u | u < v} for v €dcle(Ly)). For n =1 this follows from X C S{{y}) and so
X C L, Udclg(L). The rest is immediate from the definition of S,..(X) in terms
of S, (X). As we know that there is an n such that S,.(X) = S.(X), S.(X)— L,
must consist of a single such cone, say {u € ¥ | u < xo} for some x, € dcle (Lo).
S{xo} = xo is then clearly the largest element of dcle(Lo) below S(X). As
dele(Lo) = dele (Lo) we can set TI(S(X)) = S({xo}). Finally S(X)C S({xo, x:})
since
S(X)={y ELi|y <xjU{yeZ|y=<xd
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Thus $(X) = II(S(X)) v IL(S(X)).

(d) Suppose S(X), S(Y) and S(Z)Edcle(L)) and S(X)v S(Y)=
S(XUY)=S(Z). Now S(X)=S{xex)), S(Y)=S{yoy)) and so
S({xo, x1, Yo, y1}) = S(Z) but z,,z, € S(Z) and s0 2o, z; € S({x, X1, Yo, y:}) which
is contained in S, gwo({S{xo}, S{x1}, S{yo}, S{x, y})) since S({xo, x1, yo, y:}) C
L,Udclg (Lo) = Ly Udcle(Ly). T

We return now to the proof of the lemma. Consider any finite L, C £ and an
isomorphism type of L; over Lo. Form &£’ as in the sublemma and let £, be the
least downward closed sub u.s.l. of £’ containing L, which is closed under Il; and
I1,. %y, clearly exists and is countable. Moreover by the closure under I, and II,
it is easy to see that L, C,, L1(Zo0). We can now choose another finite sublattice
of %0 and another isomorphism type to generate an end extension #* of &' as
in the sublemma and so a countable end extension %, of %o in which the
required extension exists and is special. As Lo Cena £o1 extensions that are
special in %oo (e.g. Lo Csp L1(Zo0)) remain so in o,. [The point is that the
definition of specialness depends only on dclg,(L,) which is the same as
dclg, (L:1).] By dovetailing over all finite sub u.s.1.’s and all possible types of finite
extensions we can eventually get #“’, an end extension of ¥ with %=
Loo Cena L) 50 that ¥, satisfies the requirements of the lemma. By continuing
to dovetail (always using new elements) so as to include all elements of the £
as well we can get our desired £* as £’ along with the division into countable
Z. asrequired by the lemma. a

By this lemma it suffices to consider only those u.s.l.’s £* such that there is a
continuous monotonic sequence £, of downward closed saturated countable sub
us.l’s with U %, = #*. We fix such a system and will define our notions of
forcing ?... to be the conditions in the notion of forcing appropriate to Z,.1
which are represented by conditions in ¥, via special extensions. To be precise
suppose we have a definition for a class €5 of dense sets in the notion of forcing
appropriate to any countable u.s.l. analogous to that of Section 1.

DEFINITION 3.7.  The sequence of forcing notions. Given £* = U £, as above
we define ?, and ¥, by simultaneous induction. %, is the notion of forcing
appropriate for %, and %, is any %s-generic filter on %,. Suppose ?. is defined
and ¥, is a €s-generic filter on P, (we will later verify that one exists). P, is
the collection of all conditions P in the notion of forcing for Z, ., such that there
isa PPEY, and a ¢ such that dom¢ C Ly, ¢(P)=P, ¢ [(Le N L) =1d,
LrN% Cypd '(Le)(£) and L N %, C ¢ '[Ls] satisfies the rank condition
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where we say that L, C L, satisfies the rank condition if Vx € (L, — L,) Vy € L,
(tk y =1k x). Of course for z € £* tkz = up(z € % — U,s %,). %1 is then
any %s-generic filter on @, ... For limit ordinals A we just set #, = U, ., ?, and
4 =U.a%.

The crucial step now is to define the class of dense sets €5 needed to make
%s-genericity of ¥, imply the existence of a 6s-generic 9,., C P.... Again the
density of the D, (totality), D, ., (diagonalization) (and D, if employed) in
P, .1 follow immediately from the corresponding genericity requirements on %,.
The density here of the D, (initial segments) will also follow from the
corresponding requirements on ¥, because of the specialness of our representa-
tions. Thus the only real problem is to guarantee the extendibility lemma.

Suppose we are given a P € P, represented by P' € ¥, with ¢(P')= P and
some x & Ly. To add in x we must refine P to a condition Q with Lo containing
the us.l. L generated (in %,.,) by L, U{x}. To get such a Q we need an
appropriate Q'€ ¥, with representatives for the type of this u.s.l. of the
required form and a corresponding mapping ¢ such that ¢ (Q')= ¢ (P’).

DerNITION 3.8.  Amalgamation. Let 2 be the notion of forcing appropriate
to a countable u.s.l. £ €5 contains 4, and for each finite isomorphism type I of
u.s.l.’s and maps as in the commutative diagram (3.8(i))

Lo == Lt
1 li

L(I) —>end L;
Fig. 3.8().

and every condition R € # with a realization g : L,— L, C Lr of L; such that
glLo] = LoCy, L= g[L:](£) and every realization f:L¢—> LoC &£ such that
flLo= gl Lo the sets D5 ror ={Q | Q is incompatible with R or there is an
h:L|— L, realizing this type with h | L5 = f| Lo such that h[L¢] C,, h{L1] and
#(Q)=R | L, where rg ¢ = hj[L.], dom ¢ = L, and ¢ is given by hjg '(x)» x
for x € L,}. The situation is pictured in Fig. 3.8(ii).

@' also includes for every LoC, Li(£) the sets Ds .1, ={Q ILO CoLi(Lo)}.

The basic lemma, whose proof we postpone to Section 4 so as not to interfere
overly much with the flow of the overall argument, is then the following:

LemMA 3.9. If P is appropriate to & and & is saturated then the sets D5 gy
and Ds;,;, are dense in P.
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/ \s
L L %1,

sp
f L’ / flLy=giL,

Fig. 3.8(ii).

Now let #* = U, ., %, be asin Lemma 3.5 and ?,, 9, as in Definition 3.7.

To reflect the rank condition on representations for conditions in 2,., we
modify the €5 slightly in this setting to get €; by requiring in the definition of the
Dsirgs that g[Lo]C g[Li] and h[L¢]C h[L1] satisfy the rank condition. Of
course for &, the two notions coincide and so Lemma 3.9 gives us the
€s-genericity of %,.

LEMMA 3.10. If G, is €s-generic for G, then there is a Y, ., which is €s-generic
for Po...

PROOF. We must show that each of the required sets is dense in 2,.,.
Consider any P € ?..,. Let P'€ Y, and ¢ be as in the definition of 2,.,.

(@) Dy, Let Q' = P’ be given by %-genericity of 4,, i.e., Q' € D,,,. Clearly
Q=¢(Q)=¢(P)=Pandso QED,, N P,,.. m|

(b) D Let Lobe the type of Ly N £, = Loand L, D Lo thatof L, D L, N %,
with realization k : L,— Le. Then we have a realization g : L, — ¢ '[Lr]=L.C
Ly with g = ¢ 'k so that g Lo=k (as ¢ ] Lo= i‘d). By the definition of #,.,,
g[Lo]=LoC,, Li = g[L:](£.) and the rank condition is satisfied. Now apply the
€s-genericity of ¥, to geta Q'= P’ with Q' € Y, N Ds ., where I is given by
specifying Lo and Li as the types of LN %, and L where L is the us.l.
generated (in Z..1) by Ly U{x}, j as just inclusion and f: Li—>L N %, =L} as
the restriction of the natural realization k : L{— L (which of course extends
kL, and sends x to x) to L.

Now let ¢y =kh™ so that ¢y '[LNL]=hk (L NL)= h{Lo)Cs h[Li])=
hk™'[L]=4¢'[L]. As h[Li]C h[L!] also satisfies the rank condition, $(Q)=
Q € P4+, and L, = L which of course contains x. By the definition of Ps;p
¢'(Q')= P'I L, where dom ¢’ = hj[L.] and ¢’ : hj(x)» ¢ (x). Now y(h(x))=
kh™(h(x)) = k(x)=x and s0 ¢ = ¢¢' on h[L,]. Thus Q = $(Q') = ¢¢"(Q") =
o(P)=P. O
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(¢) D,.., for xXy. We may assume by (b) that x,y € L,. Choose Q'= P’
with Q'€ 9% ND2ey 18- Q=¢(Q)E P,sy and as Q'F— ((f)f“’_l"’ =
Gsw), Q=¢(Q)F1 (¢S =G,). 0

(d) Ds... Again we may assume that x €L,. Choose Q'=P' with
Q'€ %, N D;. 41y Thus for some y < ¢ '(x), y € Lo,

Q' k(¢ ®isnot total or ¢o¢ '@ =1G,).

Asy<¢'(x)and Ly N Lu Cip ¢ '(Le)(Z.) there are yo E dcle, (Lr N £,), say
Yo<z €Ly N, and y; € ¢ '(Ls) such that y = y,v y;. Now we may assume
by extendibility at level a that y, € Lo and so

Q' H(¢.*7 is not total or
¢t "0 =1F00(G) D Gy).
Thus, as ¢(z) = z,
o (O (d)?‘ is not total or
6 =1F 0.:0(G.) D Goyy).

Of course ¢(Q')E P..; and ¢(Q')=P. By (b) we may choose Q = ¢(Q"),
O (S @a-}] With Yo (S LQ. As F‘Q',z’y0 = Fovl»)’o’

O (qu’ is not total or
G
‘be = GYo @ G¢(y:))'

There is, of course, a v € Lo with v = y, v ¢(y,) and Q ¥ G,, D G,(,,,=rG, and
so Q ll-(d)? *is not total or ¢f‘ =rG,). Now by (c) we may even omit the second

alternative unless v < x as required. ad
(e) Dsu,.,. By Lemma 3.4 there is a finite L such that L, CL C %.., and
Lo Cp Li(L). Now argue exactly as in (b). il

(f) Dsirgs- we need only consider the case that P refines R. By (b) we may
assume that L;=f[L¢]C Ls. By (e) we may also assume that L,C,, Li(Ls).
Consider now the type of an extension L of L, containing an L] with
Li—LyCL—Lp realizing the type specified in I over Lg such that no
extraneous ordering relations are introduced, i.e.,

(*) VxEL[IyELi(x<y)>xE L
and

(%) Vx€L[IyELi(x<y)>xEL].
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By the saturation of %£,., we may choose an L C £,y with L — L, C %11~ %,

realizing this type over Ls.
A picture of the lattices is given in Fig. 3.10(i) and the associated commutative

diagram in Fig. 3.10(ii).

Fig. 3.10(i).

I~ >
(___
\

AY
\
\
\
\
\
\
\

s &> L; -—-> L,
end
\ /
Lg

Fig. 3.10(i).

We need a Q'= P’ which will represent a Q € %,., satisfying all the
requirements of Ds;rer. We choose a Q'€ ¥, N Dsjp 7 where I_:0=L0;
Li=Ly;

:Lo—>¢7[Lo]  via $7'g;
:Li>¢7' L] via ¢7'g;
L¢ is the type of Ly; L} is the type of L; we extend g in the natural way
extending flLs to a realization g:Li—L and so g:Li—Ls; we set

f L — ¢ '[Le]tobe ¢ 'g;and j: L,— Liis justjas L, =L, and j[L.]C L|C
The diagrams for this set up are given in Figs. 3.10(iii), (iv).

o Om
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Ly

¢~'[L)]
¢™'[Lol
Fig. 3.10iii).
/d)"[Lo] \
L,= l:n cﬂ L"I =L, T' QSVI[Ll]
[
L=L; <> Li=L —— > L
f'—‘ ¢7'g /
¢7'[L.]
Fig. 3.10(iv).

We must first verify that g has the properties required to apply Ds jp 7. As for
the rank condition on g[Lo]C g[L1], i.e., for ¢ '[Lo]C ¢ '[Li], consider any
xE€¢ '[Li]-¢ '[Lj=¢'[Li— Lo and any y € ¢ '[L,]. If tk x <rk y then by
the rank conditon on ¢ '[LrNZL]Cé '[Lr] we know that
xZ ¢ [Le]-d ' [Lr N %] Thus x€¢ '[Lr N L] and so ¢(x)=x and
x € L, — Lo. By the rank condition on L,C L; assumed in Ds;r,y, Tk (y)=

rkx=ea and so ¢(y)E %, and ¢(y)=y. Thus rtky =rkx for the required
contradiction.
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We next verify that ¢ '[Lo] = §[Lo] Co §[L1] = ¢ '[L:](Z.).

(i) As LoCyLi, ¢ '[Lo] Cena ¢ '[L1]).

(ii) Consider any x €dcly, ¢ [Lojand v € ¢ '[L | withx <v.IfvEL N Z,
and x <z € ¢ '[Ly] then by L, N %, C., ¢ '[Ls] there is a t € L, N &, such
that x <t<z Thus x<t=¢({)<¢(z)EL, By LyC,,L, we then have
d(Ww)EL, with x=< ¢(w)< ¢(v)=v. Of course w=¢(w) as P(w)=<
vEL,NL,. Thus x <w <v and w € ¢ '[L,] as required. Now suppose that
VEL -%,.As Ly N fu Co® '[Le](Z£), x = xov x, with X()edclya(LP Nn4%,)
and x, € ¢ '[Lr]. As xo<v there is a u €L NE with xo<u<v (by
Lr N%, Copd '[Lr](Z)). Thus u = ¢(u)<(v)EL, and u = d(u)=uov u,
where uo€dcl,, Lo and u € Ly (by LoCy, Li(Lp)). As ¢ (ug) = uo< ¢(v) and
uoEdcl,, Lo there is a ¢(t)E L, w1th U< ¢(t)< ¢(v). Thus we have a
t € ¢ '[Lo] with uo <t <v. As u; < v, d(u)=u<d(u)=u<¢(v). Thus
by the rank condition for LoC L, ¢(u|)€ Lo, ie., us €@ '[Lo). Thus xo<u <
tvu<vand tvu € ¢ [Ld.

Next consider x, € ¢ [Lr]. @(x)<d(v) and ¢(x))Edel, Ly (as
X <x €dcl¢ '[Lo)). By Lo C,, Li(Lr) we have a ¢(s) € L, with ¢(x,) < ¢(s) <
¢ (v). Now, of course, x;,<s=<v, s€E¢ '[Lo] and we have x =xov x; <
tvu vs<yp with tvuvs€ed '[Li

(iii) Consider any x € dclg, ¢ '[Li], say x < v € ¢ '[L,]. By the choice of ¢,
X = xo v x; where

xo = max{y < x ly Edcly, ¢ '[Lr N L]}

and

=max{y <x|y €¢ '[Ls].

By clause (ii) of the definition of the specialness of the extension there is a
weL,NZ, with xp<w=<v. Now ¢o(w)=w=<¢(v)EL, and so by
LoCyw Li(Ls), w=wovw, with woEdcl,,Ly and w.EL,. As wo,w, EY,,
d(wo) = wo, d(w))=w, and so wo, w, Edcle, ¢ '[Lo]. Thus xo< wov w, is in
dele, ¢ '[Lo). Now as x,<x=<uv, ¢(x)<¢(v)EL, So we next consider
¢ (x1)E Lp Ndcl,, Ly. Thus ¢(x))= uov u; where uo€dcly, (Lo) and u, € L,.
We then see that x, = ¢ '(uo) v ¢ '(u:) with ¢ (ue) Edcl ¢ '[Lo] and ¢ '(u,) €
¢ '[Li]. We can thus try to define Ilo(x) = xov ¢ '(uo) and ILi(x) = ¢ '(u\) as
x = y(x) v IL(x).

As x, is the largest element of ¢ '[Ls] below x and ¢ '(ui) is the largest
element of ¢ '[L,] below x, it is clear that ¢ '(u,) is the largest element of
¢7'[Li] below x. We must show that IIo(x)=max{y <x |y €dcls, ¢ '[L]}.
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Consider any relevant y. y = y, v y; with yoEdcle, (Lr N %), y1 € ¢ '[Lr]. By
definition of x5, yo<xo. Similarly y;<x; and so ¢(y)<d(xi). As
d(y))Edcly, Lo, ¢(y) < uo. Thus y = yov y1 = x0v ¢ (tho) = [To(x).

(iv) Let IIi, S, and II;, S, (for i =0,1) be the projection functions and
generating processes given by LoC,, Li(Ls) and Ly N %, C,, ¢ (Lo )(Z) te-
spectively. Thus IT; = ¢ "'II;¢ and S; give (by the isomorphism) functions which
witness ¢ '[Lo] Cop ¢ '[L1](¢ '[Le]). We can now write the functions II,
witnessing ¢ '[Lo] Cop ¢ '[Li](£.) as Tly(x)=TI5(x) v IGITi(x) and II(x)=
IGIT(x). Consider any x v y = z in dcle, ¢ "'[L:]. We know that if we apply S, to
X, = {[T3(x), i(x), [T(y), ITi(y )} we eventually get T15(z) and [Ti(z). We claim by
induction that applying S, to X = {Ilo(x), II,(x),Ilo(y), [Li(y)} we get every
element of dcle, Lr N %, generated in S,(X:) and for every element ¢ € ¢ '[Ls]
in Sx(x;) we get II3(¢) and II3(¢). This, of course, implies that we get IT5(z),
I5(IT3(z)) and I13(IT3(z)) in $(x) and so Tly(z) and II,(z) as required. The claim
holds at level 0 by the definition of the IL. Suppose r,s € S..(X:)N
dclg, (L, N £). By induction r, s € S(x). The argument given in (ii) above for x,
shows that r, s € dcly, ¢ '[Lo] and so also for any ¢ < r v 5. Thus any ¢ put into
S2.n+1 by the first clause of the definition is also put into S(X). Finally suppose
rsE€S8.(X)N¢ '[Le] and t<rvs, tE¢ [Lr]. By induction IT{(r) and
I} (s) € S(X). As the II; witness ¢ '[Lo] Cyp & '[Li](¢ '[L#]) and the genera-
tion process S; is clearly contained inside that of § (for elements in dcl ¢ '[L,] as
all of these are), IT}(r v s) € S(X). As IL(t)<II}(r v s) while S(X)N ¢ '[Li]
and S(X)Ndcly-y, ¢ '[Lo] are downward closed (in ¢ '[L:] and
dcl,-y,1 @ '[Lo] respectively), ITi(t) € S(x) as required.

We can thus get our desired Q' € 9, N Dsip ;7. We next define ¢ : Loo— L by
Y =gh 'TR[Li] and let Q = ¢(Q’) so that Lo = L. To see that Q € P,., we
must verify that ¢ '[Lo N L. ]=Lo N % Co ¢ [Lo]. Now Lo NZ. =Ly N &,
by our choice of L. Consider any x €L, N L, : ¢ '(x) = hg '(x). g "(x)E L}
and Al Li=f=¢""g Thus ¢ '(x)=hg '(x)=¢ 'gg "(x)= ¢ '(x)=x. Next
note that ¢ '[LoN%]=Le N % Cowd '[Le]=h[LI)Cowh[L]]=hg '[L] =
¥ ~'[Lo]. Thus by the transitivity of C,, (Lemma 3.3), ¢ '[Lo N %] Co ¢ '[Lo].

This argument shows that for x € Ly, ¢ '(x)=¢ '(x) and so ¢ C . As
Q'=P, Q=¢(Q")= ¢(P')= P. All that remains is to define h to show that
Q € Ds rer. We simplyset h =¢h [ Li=gl1Li(as LiCL LICL). As g2,
hILo=flLé Nextif 6:hj[L]— g[L.] is given by hj(g '(x))~ x for x EL,,
ie., gi(g '(x))» x, then we claim that §(Q)= P|L,. It, of course, suffices to
check that for the map 6’ sending ¢ 'hjg”'(x)P ¢ 7'(x) = ¢ '(x), 0'(Q)=
Q'1¢™'[Li]. But ¢ 'hjg™'(x)= hg~'gig™'(x) = hjg~'(x) = hj§ "¢ '(x). Thus if
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y = ¢ '(x) € g[L,] the map 8’ is given by Ajg '(y)+ y. This however is the very
map for which the definition of Ds p ;47 says that 8(Q")= Q'] ¢ '[L,). Finally
h[L{]= Liand h[Li] = Li and we need only check that L C,, L and that the
rank condition is satisfied. Now we chose LoC L, C,, L with LiN L, = L{ and
$0 LoCena L1 If x Edcly,,, L1, x = xov x, with xo=max{y <x |y Edcls, ., Ls}
and x, =max{y <x |y €L}. By (*), xo€dcls,,, Ly Cdcly,,, Lr and so x is the
largest element of dcl.,,, Lo below x. By (##), x; € L1 C L and so x; is the largest
element of that set below x. Similarly the generation process in dcle ,, Lr and L
applied to such decompositions gives the same results as the one for dcle,,, L¢
and Li. Of course the other requirement (ii) is guaranteed by the corresponding
one for Ly Cy, L(Z,+1) and (¥). Thus LoCy, Li(Zas1). As Li—LoCL—-Lp C
%1 — Z., the rank condition is fulfilled as well. O

All that remains is to note that at limits €s-genericity is automatic.

LEMMA 3.11. If G, is 6s-generic in P, for every a <\ then 4, =U.., %, is
€s-generic in P, = U .., P..

Proor. Note that the sequence is monotonic as ¥, C %... — any PE 4,
represents itself in 2,.,. Thus all the requirements for the €s-genericity of 4,
are guaranteed by the %s-genericity of each ¥,,a <A.

Thus modulo the proofs of Lemmas 2.9 and 3.9 which will come in the next
section we have completed the proof of our main result:

THEOREM 3.12. Every size N, u.s.l. £ with O and the c.p.p. is isomorphic to an
initial segment of 9.

Proor. Form ¥*=U %, an end extension of £ as in Lemma 3.5. Then
define P, and és-generic ¥, as described above. The map sending x € £* to
deg(G.,) where

G, = U{T.(@)|3a(PE Y% & x EL,))

defines an isomorphism of £* onto an initial segment of & by the usual
arguments from 94s-genericity as in Theorem 1.17. As £ Cena £* the restriction
of this map to £ gives the desired embedding of ¥ onto an initial segment of 9.

O

ReMARK 3.13. Of course if we include the dense sets of %, (modulo a
translation to set coding) we guarantee that for each x € ¥ and e € w if ¢~ is
total then ¢; is total for every X on some recursive tree containing G, as a
branch. Thus each set T-reducible to G, is in fact # reducible to it. This then
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gives an embedding of £ simultaneously onto an initial segment of the #, wit
and T degrees.

4. Refinements and amalgamation

We can now revert to the notation of Section 2 so that % is the notion of
forcing there defined for some given countable u.s.l. (with 0) £. Our basic task in
this section is to prove that one can construct the refinements of sequential tables
needed to prove Lemmas 2.9 (extendibility of conditions) and 3.9 (amalgama-
tion). Many of the ingredients of the construction of course come from Lerman
[9], Lachlan and Lebeuf [8] or Lerman [10, appendix B].

THEOREM 4.1. Suppose we are given u.sl’s LCo E(L), £1CEC L,
L, C &, an isomorphism | : £, £, with || £, = id (see Diagram 4.2) such that
any element x of &, which is below any y € %, is in fact in %, and a recursive
extendible sequential table ® for £5. We can then construct a recursive extendible
sequential table ® for £, and recursive functions k, g and F such that for every
i€Ew

(i) g sends ®; to a positive us.l table gd; for £, with ga(x)=
a(lly(x) v ITL(x)) for x € dcle, £, and otherwise for each x € £, a €D, ga(x)
is a distinct element not appearing in ®; (i.e., not in the range of any element of
d,).

(ii) F is an isomorphism of positive tables for £, such that F,=id for
x € dclg, %o and otherwise for each x € ¥, and ga.(x) (fora €P,), F, (ga)(x) isa
distinct element not appearing in ®; or g&;.

(iii) ®; U Fgd, —» (&: U Fg®,)[ £, Orqyy.

(iv) ®:— ®: | L3>, Oun.

(v) Fgd,— Fgd: | %£— Ouy.

Before giving the rather technical proof of this theorem we note how it is used
to give the desired constructions.

% > F—L
Il !
7

% <

Diagram 4.2,
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CoroLLARY 4.2.  Every finite lattice £ has a recursive sequential table ®.

Proor. The trivial table consisting of just the map 0+~ 0 for each ®; is clearly
a table for £, = {0}. Apply the theorem with £, ={0} =% =FLand L =%, O

Lemma 2.9. If © is a recursive sequential table for £ and &' is a finite
extension of & then there is a recursive sequential table ® for £’ which refines ©.

PrOOF. Apply the theorem by setting Lo ={0} = %, £:=Land £, = &£'. @
is then the required table and k shows that it refines ©. 0

LEMMA 3.9. If P is appropriate to ¥ and X is saturated then the sets Ds;
and Dj,r,; are dense in P.

PrOOF. Ds,,.,: We are given P € @ and L, C,, L(Z). By Lemma 3.4 there
isan L D Ly with Lo C,, L,(L). The proof of Lemma 2.11 for this L then gives a
Q=P with Lo =L and so Q € Ds,.

Ds1rgs: We may assume that the given P € 2 refines R. As in the proof of
Lemma 3.10(f) we may choose an &, containing L, and a realization L; of L}
given by an h extending f on Lg such that h[L{) C,, h[L{)(£) and such that any
element x of hj[L,] which is below any element y € L, is in fact in h[L§] C L.
We now apply the theorem with %= g[Lo] Cs, g[L\] = %1, 5= Lp, O = 0Op,
&> = hj[Li] and I of the theorem induced by the j of the dense set in the obvious
way: I(g(x))= hj(x). Let ®, k, g and F be as in the conclusion of the theorem.
We define our required Q = P by first setting L, = %, and @, = ®. The trees
Tox in Q are defined by cases:

(@) x € Lp. Set Tox (D) = Tr. (0*”). [Note that as @[ Ly refines © any O x
string is a ® [ x string for x € Ls.] Suppose by induction that Ty, (o) is defined
for Ith o =i so that there is a 7 of length k(i) such that Ty, (¢) = T, (7). We
wish to define Ty.(o*n) for n E®, | x. As k shows that ® refines ©,
n € Oy, | x and so we may set To. (0 * n) = Tp, (7 * n " D) and continue the
induction.

(b) For x& £, = hj[L,] (and x& L;), let To, be the ®| x identity tree.

(c) For I(x) € £, we build a subtree of T,. We begin by setting To, 1. (J) =
Tr. (0“). Again suppose inductively that, for Ith(c) = i, Tou)(c) is defined so
that there is a 7 of length k(i) with To (o) = Tr. (7). We now wish to define
Touxy(o *n) for n €@, [ l(x), i.e., n = a(l(x)) for some a € ®;. By conclusion
(iv) of the theorem Fga € Oy, and so we may set

Toi(o *n) = T, (7 * (Fga (x)*V7)
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and continue the induction. Note that this definition depends only on n =
a(l(x)) and not on the choice of a since for B €D, B(l(x))=a(l(x)) &
FgB(x)= Fgua(x) as Fga(x)=F,(a(l(x)) and F, is 1-1.

One should also note that the directions in cases (a) and (c) give the same
results for x € L, N %, = ¥, since for such x, I(x)=x and Fga(x)= a(x) for
any @ € ®, by conclusions (i) and (ii) of the theorem.

The maps between [T, ]| and [To, ] required in the definition of Q are just
those induced by @ in the usual way. As ® refines ¥ the situation is exactly as in
the proof of Lemma 2.1 and the maps in Q for y <x in L, are just the
restrictions of those in P. Thus Q = P.

All that remains is to verify that ¢(Q)= R | &; where ¢ is specified as in the
definition of the dense set by hjg”'(x)» x for x EL,=g[L,] and dom ¢ =
hj[L.]. This map is however precisely "' on %,. Of course the tree Ty, is just
To.xy Which was defined as a subtree of Tp, C T, as required. As for the maps,
consider any y < x in %, and suppose that S, € [ To)] is mapped to S, € [Tou)
by the maps Fo,xy.i¢)- We must show that Fr ., (S:) = Fp., (5:) = Fo.,(5:)=S,.
Recall, however, that if S, = Toux)[h] then

S, = Toimlferwmimh]-
Thus
S, = Tr (049) * (Fgay (x " V9| € 0)

where a; (I(x)) = h(i). If we apply F»., we get
Try (0F®) % (Fga; (y "] i € w).

On the other hand S, = Touo)|fouwriot] = Toiml{@ (1(y))| i € w)] where again
a; (I(x)) = h(i). By definition of Tq,y, this is just

Tr, (0?) % (Fgeu ()"0 i € o)
as required. O

Before diving into the proof of Theorem 4.1 we note a few useful facts and
lemmas (with the notation as in the theorem).

Fact 4.3. If g satisfies the other conditions imposed in (i) then g®; is
automatically a positive table for £.. (Thus ®; U g®; is a table for Z,.)

Proor. We must verify clauses (i)-(iii) of Definition 2.1.

(i) As 0Edcle, &£, ga(0) = a(lly(0) v IT1,(0)) = a(0) =0 for every a € P,.

(i) Suppose a,BED;, x <y € X, and ga(y)=gB(y). As we may assume
that a# B the conditions on g imply that y Edcle, £ Thus ga(y)=
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a(ly(y)v IL(y)) = By v III(y)) = gB(y). As x <y, x Edclg, &£ and so
ga(x) = a(lly(x) v IL(x)), gB(x)= Blolx) v IILi(x)). As x <y, IL (x) =1L (y)
and so /IL(x) = I(I1,(y)) as well. Thus ITy(x) v I(TL(x)) = o(y) v ITIi(y)). As &,
itself  satisfies (i) of Definition 2.1, ga(x)=a(ly(x)v IIli(x))=
B(ls(x) v ITh(x)) = gB(x).

(ii) As above ga(x)=gB(x), ga(y)=gB(y) and z=xvy imply that
x, ¥,z €Edcle, £ and so a (Ily(z) v IT1(2)) = ga(z) and, similarly for 8, x and y.
Now as %, C., Z1(Zs) the associated generation process produces Ilo(z), 1T,(z)
from {I1; (x ), TL: (y)} entirely inside £.. If we apply the same process to £, C %,
in place of $4C % to {Ilo(x), IILi(x),IIs(g), ITI(y)} we of course get Ily(z),
IT1,(z). By clauses (ii) and (iii) of Definition 2.1 the generating process preserves
equality of values for different a, 8 € ®;,. Now ga = gB8 modulo x and y,a =8
mod ITo(x), IT1,(x), lly(y) and /11,(y). Thus @ = B modulo any element gener-
ated in this process and so in particular Ilo(z) and [II,(z). Thus a=
B mod(Ily(z) v IT1,(z)) as required. O

Facr 44. The conditions on g and F imply that g&,[dcle, & and so
Fg®, [ dclg, &, are uniquely determined by ®;, I and F, for x € dclg, £, and in
fact , C, ®; U Fg®,.

ProOOF. The uniqueness is clear. By Fact 4.3 &, U Fg®; is a table for £.. We
must check admissibility. Consider any Fga for a € ®;. We claim that « is the
required witness in ®;: If y € ®; and Fga(x)= y(x) then x € dcle, £, by the
requirements on F and g. Thus Fga(x)= a(x)as required. O

Fact 4.5. (iii) > (iv) & ().

PROOF. Suppose a € O, and has a witness for admissibility 8 € ®; U Fg®,,
1Le.,
Vy€eE®d, UFgd, Vx € Li|a =, y—>a =,8]

B clearly witnesses (iv) or (v) according to which of ®;, Fg®; it belongs to.
Suppose B € ®; and we have y €, and x with Fgy =,«. Then Fgy =, by
admissibility. The conditions on F then imply that x € dclg, £, and so Fgy(x) =
y(x)= FgB(x)= B(x). Thus FgB is the required witness for (v). On the other
hand if B € Fg®,, say, B =Fgd. If we are given y €, with « =,y then
Fgé =, vy and again x € dclg, £,. Thus §(x) = Fgé(x)= y(x)=a(x) and so § is
the required witness for (iv). |

Now to build ®; so that @ is a sequential table we must guarantee that the
elements (interpolants) required by Definition 2.2b (iii) and (iv) for elements in
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®; exist in ®;.;. To this end we cite a definition and result from Lerman [10,
appendix B, 3.11 and 3.12] with the proviso that one reverts to the treatment of
(iv) in Lerman [9] as explained above for Definition 2.1:

DEFINITION 4.6. A finite table ¥* extending one ¥ (for some %) is a type 1
extension of ¥ if ¥ C, ¥* and the requirements of Definition 2.2b (iii) and (iv)
hold for ¥, ¥* in place of ©;, O,,;.

LemMa 4.7.  Every finite table V for (a lattice £) has a type 1 extension. [

The key new lemma which allows us to build ® to satisfy (iti) of the theorem
(in addition to being a recursive extendible sequential table for %) is the
following.

Lemma 4.8. If we have constructed (by induction) ®; and have defined g on
®; and F on g®, so as to satisfy (i)-(iit) and we are given a ¥ such that
d, >, ©, UV (atable for £.) then we can find H : ¥ =W¥* with H, (a(x)) = a(x)
if 3B €®, U Fgd,[B(x)= a(x)] and otherwise H,(a(x))> j for any specified j
(so that ®; >, &, € V*), extensions of F and g and a k > k(i) so that (i)-(iii)
remain satisfied for these extensions, in particular

(@, UT*)U Fg(®, U V) £, 0.

Proor. First note that for any table &, <>, ®, UV and H as described,
D, >, &, U¥*: Consider any a € P, UV*. If « € P; it is its own witness. If
a € ¥* then a = HS for some 8 € ¥ which has a witness B € ®,. If y €D,
x € %, and a =,y then by definition of H, a(x)= H8(x)=68(x)=vy(x). As B is
a witness for 8, 8(x) = B(x). Thus B is also a witness for . Now extend g to g*
on ®; U V¥ as specified by (i) choosing elements not in the ranges of ®;, ¥, g®; or
Fg®, when new elements are called for. Similary let F* extend F (i.e., the finite
amount defined so far) as required in (ii). Again new elements are chosen from
those not yet appearing in the construction. By Fact 4.3 g*(®; UW¥) and so
F*(®; U W) are positive tables for £, and so ®, UV U F*g*(®; UV¥) is a table
for Z..

CraM 1. @, UF*g*(@)C. (®; UY)U F*g*(®, U V).

Proor. Consider first any « € ®; U Y. It has a witness B € P, to &, -, &, U
Y. It is also the witness we require: Consider any y € ¢, UV U F*g*(d, U V).
If y E®, UV we are done. If y = F*g*5 for § €®; UV then as y(x) = a(x),
8 €Edclg, %o and y(x)=F*g*8(x)=g*8(x)=8(x). Thus B(x)=8(x)=y(x)
as required.
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Next consider F*g*a for @ € ®; UW¥. We claim that F*g*g is the required
witness where $ is the one for a in ®; C, ®; U V. Consider any y and x with
Frg*a(x)=vy(x). If y €D, UV then x Edcly, £ and F*g*a(x)=g*a(x)=
a(x)=y(x)=B(x)=g*B(x)=F*g*B(x) as required. On the other hand if
vy =F*g*§ for some 6§ €D, UV then F*g*6(x)=F*g*a(x) and so by the
requirements on F* g*8(x)=g*a(x). Thus by the requirements on g*,
x Edcly, # and g*8(x)= 8(Io(x) v ITi(x)) = a(lo(x) v IITi(x)) = g*a(x). As
B is a witness for a, a(ll(x)vIIL(x))=BIl(x)v IIl(x))=g*B(x)=
F*g*B(x)=F*g*8(x) = y(x)as required for F*g*p to be the desired witness.

U

We can now apply (vi) of the definition of an extendible table (2.3(b)) to O,
with j'>j larger than any element used so far to get a k > k(i) and an
isomorphism P as there described to yield the following diagram:

3=, UF*g*d, —> 3| ¥ —>, O«
al Je
(D,UF*g*Q,U‘IrUF*g*\I, @”5

Pl a

Y =&, UF*g*®, UPVYUPF*g*V —> T|¥, <>, O,

It now suffices to show that we can define H : ¥= ¥* and extensions of F and
g such that ¥* U Fg¥* = P¥ U PE*g*V¥. We first claim that we can set H = P.
The requirements on P in (vi) are precisely those needed for H in the theorem.
Thus the final claim is that we can define acceptable extensions F* and g* of F
and g so that PF*g*V = F'g™¥* = F'¢"P¥. Suppose then that o € ¥ — ;.
We must define g'Pa. If x#&dcly, £ then we can let g*Pa(x) be any new
distinct element and then set F'g"Pa(x) to be PF*g*a(x). (As g* suitably
extends g, g*a(x) and so F*g*a(x) are not mentioned in Fg®, U®,. The
definition of P then makes PF*g*a(x)>j and so a new number eligible to be
F’g"Pa(x).) Thus for x & dcly, £, we have suitably defined F; and g* Pa(x) for
a€cVv,

Next consider an x € dclg, &, so that x = IIy(x) v IT,(x). We are required to set
g Pa(x) = (Pa)(ITy(x) v ITI;(x)). Thus we must set

Fi(Pa(lly(x)) v ITI(x)) = PF*g*a(x) = P.F(a(lly(x) v ITL(x))).

We must now verify that F; suitably extends F,. The first concern is that if
x Edclg, &, then F, =id. In this case, however, II(x)v [TI;(x)=x and so
g Pa(x)= Pa(x) and PF*g*a(x)= PF*a(x)= Pa(x) as F* =id as well. The
only other concern is that, for x €dcly, £ —dcle, £, F; extend F,, ie.,
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F. ((Pa)(Ily(x) v IILi(x))) may already be defined. This can happen, however,
only if 38 € ®; with B(x) = (Pa)(Ilo(x) v IT1,(x)). By our choice of P, however,
this can occur only if

A6 €(D; U F g d)[8(I1s(x) v ITIi(x)) = a(Tlo(x) v IT1(x))]

in which case
(Pa)(Me(x) v IT1)(x)) = a (Tly(x) v {T1,(x)).

Thus F, (a(Ils(x) v IT1;(x))) is defined and so equal to F(a(Ily(x) v I[TI,(x))) as
F*DF. If § €®; then

F*(a(I(x) v ITL(x)) = FX(8(Mo(x) v IT,(x))) = F*g*8(x)

and so P.(F*g*8(x))=F*g*8(x)= F%(a(lly(x) v ITI(x))) as required. On the
other hand if 8§ =F*g*y for some y€&€®; then we could not have
8(Ils(x) v ITL,(x)) = B(x). The point here is that as x & dcle, Lo, [TL(x) € dcle, £
and so g*y and so F*g*y at I1y(x) v IT],(x) are by choice of g*, F* elements not
mentioned in @;. Thus F; D F, as required. O

ProoF OF THEOREM 4.1. We construct @, and define F and g on the
appropriate domains by induction.

Step 0. Let ¥ be any finite table for £, 2 Z;. Apply (v) of the definition of
extendibility (2.3(b)) to © to get ¥ =V* > ¥*| £, @, Define g* on ¥* and
F* on g*W¥* as required in (i) and (ii) of the theorem with new elements chosen
outside of ©; as well as ¥*. By Fact 44 ¥*U F*g*¥* is a table for %,
admissibly extending ¥*. We can now apply (vi) of Definition 2.3(b) to get

¥ — P* Y, © >, 0,
'l a

\LIB

2=V*UPF*g*¥* —» 3| %, —> 0,

We can now set ®,=V¥* ¢ = g* and F = PF*. Thus ®,U Fg®,| £, O, and
we may set k(0) = k to begin the construction. The only point to verify is that F
satisfies the requirements of the theorem: If x € dclg, £ and a € @, =V* then
ga(x)=a(x) and F,(ga)(x)= P.Fi(ga)(x)=Paa(x)=a(x) as Pa =a for
a €E¥*, On the other hand if x&dcly, £ then F*g*a(x) and so the
PF*g*a(x)= Fga(x) are now distinct elements as required.
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We now list all possible instances of (v) and (vi) of the definition of
extendibility for ¥,, ® and satisfy the nth ones at stage 2n+1, 2n+2
respectively. In either case we first make sure we get a type 1 extension.

Step i + 1. By Lemma 4.7, ®; has a type 1 extension L MUR By Lemma 4.8 we
can find k > k(i), H : ¥* =¥ and extensions for F and g so that ®, C, &, U ¥*
and

(@, UY*)U Fg(D, UTH) ] L3, O,.

As H.(a(x))= a(x) if AB € D;[B(x)= a(x)], it is clear that &, U ¥* is also a
type 1 extension of ®; as is any admissible extension of it. For notational
convenience let @, UW¥* =@'. We now divide into cases by the parity of i.

i=2n. We must guarantee that & satisfies the nth instance of (v) of
Definition 2.3(b). Suppose it is given by a table ¥ for £' D ¥,. We must build
®;.; an admissible extension of @', an isomorphism P:¢>
V*— ¥* 1 £, C, Diyy, and extensions of F and g as required.

We begin by choosing ¥’ = ¥ with all elements in the range of ¥’ new (i.e., not
mentioned in @', Fgd' or ©,). Thus &' C, ¢'UV'[ L. We can now apply
Lemma 4.8 to get a k'>k, an H:¥V'[ £,— ¥* with &' C, ® U ¥* and

(o' UT* U Fg(®' U¥*)] % C, 6.

We can clearly extend H by setting H, = id for x& £, so that HY' =¥’ =V,
Thus we have
v

|

HYV' > HV' | £, =V*C, ' U¥*.

We may now set ®@,,, =®'UW¥* k(i +1)=k’ and extend F and g as specified
by Lemma 4.8 to satisfy the nth instance of (v) and keep the induction going.

i=2n+1. We must guarantee that ®,,, satisfies the nth instance of (vi).
Suppose it is given by a table ¥ for ' D %, with V[ &£, C, ®.C, ®: (some
i'=1i),a¥* admissibly extending ¥ and a j = i. It suffices to build ®;,, 2. ®' and
a P:¥V*="¥* with V' %,C, @i, and to extend F and g appropriately to
satisfy (i)~(iii).

We begin by defining P* on W¥* so that Pla(x)=a(x) if
AB €Y[B(x)=a(x)] and otherwise P} sends everything to new larger ele-
ments. We claim that &' C, &' U P*¥*| &Z,. For any P*a* with a* EV¥*| %,
a* has a witness e EV to VC, V* and « hasone BEd' to V[ L C. P'. B is
the required witness for P*a*. Consider any y €®’, x € ¥, with y(x)=
P*a*(x). By the choice of P*, 386 € ¥[8(x)=a*(x)] and P*a*(x)=a*(x)=
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8(x)= y(x). By the choice of a, a(x)= 8(x) (= y(x)) and so by the choice of 3,
B(x)= y(x)=P*a*(x) as required.

We can now apply Lemma 4.8 (for j of this instance) to get
H:P*V* | %,5 V" %, where V" = HP*¥* once one extends H by setting
H, =id for x € %,. This gives us &' C, &' U ¥" | ¥, and suitable extensions of F
and g such that (i)-(iii) are satisfied for ®;,; = ®'U V" | £,'with some suitable
k'> k. We can then set k(i +1) = k’. We have thus also satisfied (vi) by setting
P=HP*:¥*—>V¥" as long as P satisfies the conditions of (vi) and
Y| Ly Co Divi. As for the first point, if @ €W then P*a = a € P*¥* but as
Y1 L.Cd Cd, H(a(x))= a(x) for x € L, while for x& ¥, H, =id. Thus
HP*a=a for a €¥. On the other hand if nZV¥lx then P¥n)g
(@ UFg®d)x and so H,Pi(n)>j as required. Finally to see that
V' LiCoa @i =P UV | &, consider any a EP'. As V' [ LDV L C D' we
may choose a witness B € ¥. We claim 8 works for ¥* | £, as well. If y €V,
x € %, and y(x) = a(x) then by choice of P*, 35 € ¥ with y(x) = 8(x) = a(x).
Now by choice of B, B(x) = 8(x) = a(x) as required. a
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