
ISRAEL JOURNAL OF MATHEMATICS, Vol. 53. No. 1, 1986 

INITIAL SEGMENTS OF THE 
DEGREES OF SIZE 

BY 

URI ABRAHAM a AND RICHARD A. SHORE b'* 
aBen Gurion University of the Negev, Beer Sheva, Israel; 

and bCornell University, Ithaca, New York, USA 

ABSTRACT 

We settle a series of questions first raised by Yates at the Jerusalem (1968) 
Colloquium on Mathematical Logic by characterizing the initial segments of the 
degrees of unsolvability of size ~1: Every upper semi-lattice of size ~ with zero, 
in which every element has at most countably many predecessors, is isomorphic 
to an initial segment of the Turing degrees. 

Introduction 

The study of initial segments (or equivalently the ideals) of the Turing degrees, 

9 ,  has been a major concern of Recursion Theory since Post [13] and Kleene 

and Post [6] began the systematic investigation of the structure of the degrees 

under T-reducibility. The first result was the existence of a minimal degree 

proven by Spector [21] to answer the question raised in Kleene and Post [6]. 

Since that time there has been a long sequence of questions, conjectures and 

theorems by many people elucidating more and more of the possible initial 

segments of 9 .  We cite just a few of the key steps: Countable linear orderings, 

Hugill [4]; countable distributive lattices, Lachlan [7]; all finite lattices, Lerman 

[9]; all countable upper semi-lattices, Lachlan and Lebeuf [8]. The techniques 

developed in these papers have been applied to many other degree structures 

from 1-1 degrees to degrees of constructibility. Indeed their analogs in set theory 

(perfect forcing or Sacks forcing) have had applications beyond those to degree 

structures. Within recursion theory the results have come to play a key role in 
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the analysis of the global structure of ~ and so in answering much more general 

questions. Perhaps the first such application was by Feiner [2] who used the 
results on linear orderings to refute the strong homogeneity conjecture. Lach- 

lan's [7] result of course gave the undecidability of the theory of ~ while it or 

other initial segments results played a key role in all the more recent work on the 

global structure of ~ as in Simpson [20] or Nerode and Shore [11] which 

characterizes the degree of Th(~)  as that of true second order arithmetic. Other 

applications include the refutation of the homogeneity conjecture in Shore [18], 

restrictions on possible automorphisms of @ in Nerode and Shore [12] and 

various definability results in ~ as, for example, in Jockusch and Shore [5]. In 

another direction Lerman's result on finite lattices was the key ingredient in the 

proof of the decidability of the two quantifier theory of ~ (Shore [17] and 

Lerman [10]). A reasonable survey can be found in Shore [19]. 
Now all of these results have dealt with just the countable initial segments of 

~. Although there were some early isolated results on the uncountable ones 

(e.g., Thomason [22]) they remained largely mysterious. The problem as to what 

they might be was first raised in Yates [23] in a series of questions about the 

initial segments of ~ of size I~1. At the time there was some feeling that the 

answers might be independent of ZFC and a consistency result for an initial 

segment of type oJ1 was pointed out. As it turned out, he was both right and 

wrong. He was right in that the independence phenomenon was lurking in the 
initial segments problem but wrong in that it does not appear with ones of size 
N~: Groszek and Slaman [3] prove that it is consistent (relative to the con- 

sistency of ZFC) that the continuum is large (e.g., 2 ~0 > 1~2) and there is an 

upper semi-lattice (u.s.l.) [with 0 and the countable predecessor property] of size 
N2 (and so < 2 "0) which is not isomorphic to an initial segment of ~. In this paper 

we will give positive answers to the entire sequence of questions of Yates [23, §6] 
by proving (in ZFC) that every u.s.l, of size 1~ with 0 and the countable 

predecessor property is isomorphic to an initial segment of ~. (Of course as 

has a least element 0 and every degree has at most countably many predecessors, 

every initial segment of ~ of size ~ must have these properties.) We also 

describe the minor additions needed to get the result for tt and wtt  degrees as 

well. 
We should mention that some partial results along these lines (for ~ol and then 

distributive lattices) were announced in Rubin [14] and [15] but no write up ever 
appeared and we do not know what were his intended constructions. The 

motivation for our basic approach to iterating the initial segment construction 

into the transfinite comes from a forcing argument in Shelah [16]. 
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As in Lerman [10] one should, as Sacks first suggested, view the initial 

segment constructions in recursion theory as forcing arguments where conditions 

are recursive perfect trees and generic objects are those which meet certain 

specified collections of dense sets. Suppose that ~ is the appropriate notion of 

forcing for embedding a countable u.s.l. ~ as an initial segment of 9. A 

condition will consist of finitely many elements of 5¢, trees for each one and maps 

between them. One then specifies a collection of dense sets c£ such that any 

C£-generic filter ~3 on ~ gives an isomorphism of ~ onto an initial segment of 

by sending x to the degree of the branch of the tree associated with x 

determined by ~ (G~ = O{Tp.~ (th)[ P ~ ~} and x ~ deg G,). The problem now 

is how to extend ~3 to a q-generic filter ~'  on ~ ' ,  the notion of forcing for some 

~ '  _3 L¢, and to do this in an iterable way so as to be able to carry on through 

wl-many extensions. The idea of Shelah [16] is that one restricts ~ '  to those 

conditions which are represented by conditions in ~ via some isomorphism. 

More precisely if tk : L¢ ~ ~7' is a partial (u.s.1.) isomorphism and P E ~d then 

P ' =  ~b(P) is an element of ~ '  where P' is gotten from P by relabelling every 

element x as ~b(x). To make sure that any q-generic filter ~' on ~ '  extends ~d, 

one requires that ~b-lr~ = id. If one can define ~ and ~ so that such an 

extension is always possible then one can follow a division of a given u.s.l. L¢* of 

size ~ into countable sub u.s.l.'s, ~ * =  U . . . .  ~ ,  to build a monotonic 

sequence of CO-generic filters ~d~ for the appropriate notions of forcing ~ such 

that ~d* = U ,< , ,  ~3~ defines an isomorphism of Le* onto an initial segment of 

the same way ~3 did for the original countable LP. 

We carry out this program for linear orderings in Section 1. First (Theorem 
1.21) we give a fairly standard presentation of the countable case, basically in the 

style of Lachlan [7] as presented in Epstein [1] with a couple of minor 

modifications to pave the way for the extension process. We then proceed to the 

size ~I1 case. Of course the key problem is the choice of the appropriate dense 

sets (and the proof that they are dense) to permit the extension process to 

proceed. These are to be found in Definitions 1.22 and 1.23 and Lemmas 

1.24-1.26 alorlg with motivation for their precise form. Lemma 1.27 then carries 

out the inductive argument by showing that if ~ is q-generic for ~ then the 

sets in ~ are dense in ~+~ and so there is a ~+I_D ~d~ q-generic for ~+~. As 

limit levels are essentially trivial ( ~  = l,J~<~ ~d, and ~ = l,.J~<~ ~ )  this com- 

pletes the proof for linear orderings, Theorem 1.29. 

Unfortunately, the result for arbitrary u.s.l.'s is considerably more compli- 

cated than that for linear orderings (or even distributive lattices which much 

resemble linear orderings). Of course there are the severe extra complications 
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even in the countable case when one gives up distributivity. These are presented 

in Section 2 in the style of Lerman [10] (again with some minor modifications to 

pave the way for the extension process) where we present Lachlan and Lebeuf's 

result for countable u.s.l.'s (Theorem 2.17). Much more, however, is needed in 

the general case than was done in Section 1 to carry the extension procedure into 

the transfinite. The bulk of the paper (Sections 3 and 4) is devoted to this 

problem. 
There are two main points. The first is that only very special conditions P in ~ 

can be used to represent ones P' in ~+1 via an isomorphism ~b. Roughly 

speaking $-I[Lp,] must be as free as possible over $-l[Lp N Lea]. [Lp is the finite 

u.s.l, whose elements are mentioned in P.] The precise definition is motivated 
and then presented in Definition 3.2. Various needed algebraic properties of 

such extensions are then established in Lemmas 3.3-3.6. We can then define (3.7) 

the notions of forcing ~ ,  modulo the correct choice of the class ~ of dense sets. 

Their definition is motivated and then given in Definitions 3.8 and 3.9. Assuming 

the density of these sets at the initial level the inductive argument is then given in 

Lemma 3.10. 
What then remains is the demonstration of the density of the sets needed for 

the inductive argument. The proof is provided in Section 4. The key ingredient 

here is an extension of the u.s.l, representation theorems proved by Lerman [9] 

and Lachlan and Lebeuf [8] that exploits the special extension introduced in 
Section 3 to enable us to refine a nice representation of a given finite u.s.1, to one 

for a larger one containing two isomorphic copies of (some part of) the first in 
such a way that each one induces the same reduction procedures on the 

associated sets being constructed. This is Theorem 4.1. 
We follow the style and notation of Lerman [10] as much as possible. We have, 

however, included all definitions dealing specifically with initial segments results. 

Section 1 is in fact self contained and can be read without previous knowledge of 
initial segments results. (One does need to know that {~b x} is a list of all possible 

Turing reductions from X.) In Section 2, however, we have relied on Lerman's 

[10, chapter VIII embedding of finite lattices as initial segments in that we refer 

to that book for the proof of two key lemmas (2.14 and 2.16). Similarly we rely 

on his construction of suitable representations for finite lattices [10, appendix B, 
§2] in our proof of Theorem 4.1. Otherwise, the paper is self contained. 

1. Linear orderings 

Our goal in this section is to give a self-contained proof of our embedding 

theorem for the special case of linear orderings: Every linear ordering ~* of size 
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N1 with least element and the countable predecessor property (i.e., {y I Y < x} is 

countable for every x E ~*)  is isomorphic to an initial segment of the Turing 

(wtt and tt) degrees. Although many of the problems encountered in the general 

case of arbitrary upper semi-lattices do not appear here the main idea motivating 

the construction can be seen relatively clearly. 

We begin with a proof for countable orderings ~ which is then extended to 

uncountable ones. (See the discussion following Theorem 1.21 culminating with 

Definition 1.22 of the forcing notion and Definition 1.23 of the required dense 

sets for an explanation of this extension process.) Most of our notations and 

presentations are those of Lerman [10] although in the case of linear orderings 

almost all notions of lattice representations are suppressed in favor of an 

unstated representation within the recursive sets under inclusion as used, for 

example, in Lachlan [7] or Epstein [1]. (We, of course, must bring the 

representations and associated lattice tables out in full force in the general case.) 

A more germane difference from Lerman [10] as well as other common 

presentations is that we cannot assume that ~ has a maximum element if we 

hope to eventually extend the embedding to one of an ~*  of size 1~1. Thus we 

cannot work with a single master tree approximating such a maximum element 

but must have conditions with distinct trees T~ for each of the elements i E 

being approximated by the condition. The role of the congruence relations that 

dictate the decoding of the sets corresponding to other elements of ~ from the 

branch on the master tree is played by a (commutative) family of recursive maps 

sending branches of Tj to ones of T~ for i less than j in LP. 

These ideas are embodied in Definitions 1.3 and 1.6 which should therefore be 
studied even by those familiar with Lerman [10]. Such a reader can then skim to 

the end of the proof of the embedding result for a countable Ze (Theorem 1.21). 

A reader familiar with some other proof of this result should go over all the 

definitions and statements of the lemmas to become familar with the notational 

setup. The proofs, however, are essentially standard. The only one even slightly 

out of the ordinary (because of our not assuming a maximum element) is Lemma 

1.11 which is worth a look for that reason. Finally, for the reader who has never 

seen or no longer remembers any initial segments results (except perhaps the 

existence of a minimal degree) we have included all basic definitions and 

complete proofs. 

DEFINITION 1.1. Strings. (a) 6e is the set of all strings tr, i.e., all finite 

sequences of natural numbers or more formally all maps tr:n--~ to for some 

nEto .  
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(b) The length of a string or, lth or, is its domain. 
(c) We order strings by extension or C_ z iff Vn, m for(n) = m ~ z(n) = m]. 
(d) For a given function f : to ~ [to]<~ we let 5¢ r be the set of all f-strings, i.e., 

all o" such that Vx < lth or (or(x)E f(x)) ([to]<~ is the set of all finite subsets of 

to). In particular if f ( x ) = p  = {0, 1 , . . . ,  p - 1} we call these p-ary strings, e.g., if 

p = 2 these are the binary strings. 

DEFINITION 1.2. Trees. Let f : to ~ [to]<~ be given. 

(a) An f-tree is a map T:5¢ t ~ 5 ¢  t such that (Vor, rESet)[or_C~-¢:> 
T(or) C_ T(~')]. 

(b) ~" is on V ift 3or [~ = T(or)]. 

(c) 7 is compatible with T i f f  3or [z _C T(or)]. 

(d) h is on T iff V~" C_ h [z is compatible with T]. In this situation we call h a 
branch of T. It is associated with a path g through T such that h = T[g]  = 

U~cs V(or). [V] = {h I h is on T}. 

(e) T is recursive if it is recursive as a function. 

(f) T is uniform if (Vn) (3{pj ]j E f (n )}  of equal length) 

(Vor of length n) (Vj E f(n))[ T(or * j)  = T(or) * p~]. 

(g) T* is a subtree of T, T* C_ T, iff rg T* C_ rg T. 

NOTE. One can specify an (f-) subtree T* of an (f-) tree T by giving an (f-) 
tree S and setting T* = To S. Now if T and S are uniform so is T*. One can in 
this case also specify T* by induction on length or by giving at level n for each 

j ~ f(n)  the string 0r such that if T*(or) = T(~-), then T*(or * j)  = T(~" * pj). Thus, 
for example, if T* _C T are both uniform then (Vn) (3m)  (Vor of length n) (3z  of 

length m) (T*(or)= T(r)).  

For the rest of this section all strings will be binary and all tress will be binary 

uniform and recursive. As we identify a set with its characteristic function we will 

speak of a set G being on a tree T, determining a path through T, etc. 
Let L¢ be a given countable linear ordering (with least element 0) specified by 

< .  We wish to define a notion of forcing, i.e., a partially ordered set (~, < ) and a 

class q of dense (i.e., downwardly cofinal) sets such that any q-generic filter ~J 

specifies an embedding of Le as an initial segment of the Turing degrees 9. 

[Recall that ~ C_ ~ is q-generic if 

(i) V P E ~ V Q > = P ( Q E ~ ) ,  

(ii) VP, Q E ~  3 R ~  (R<=P&R<-_Q),  
(iii) VC E q (~d f3 C ~  O).] 
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The basic ingredients of our forcing conditions (elements of ~ )  will be trees T~ 

which we think of as approximating some G~ on T~ whose degree will be the 
image of i E ~ under the hoped for embedding. We reflect the requirement that 

if i<~j then G, =<rGj by including recursive maps from [Ti] to [T~] in our 

conditions. These maps will be specified by a recursive monotonic function f 

such that to see whether at level n the path C~ associated with Gi turns right 

(C~ (n) = 0) or left (Ci (n) = 1) one just asks which way the one Cj associated with 

Gj turns at level f(n). Now if r g f  = to (or is even cofinite) we could reverse this 

process to compute the path on T~ from the corresponding one on T,  As we will 

want Gj ;~TG~ if j ~  i we consider only maps f with coinfinite range. 

DEFINITION 1.3. Projections. (a) Let S and T be trees and f a recursive 

monotonic function with coinfinite range. We say that f induces the recursive 
projection F : [T]--~ [S] if F(T[C])= S[f-1[C]] where f-~ : 5e2--* 5¢2 is given by 

f - ' (o ' ) (n)  = o'(f(n)) and f - l [C]-  U, ,cc f  1(or). 
Thus, for a given branch T[C] following the path C through T, its image 

under F is the branch of S determined by the path of f-1[C] which turns right 

(left) at level n just if C does at level f(n). 
(b) In this situation we say that two strings ~ and ~" are congruent rood f, 

~r =-tz, if f-l(~r) = f-~(r). We say that level n of T is an f-differentiating level if 

for o- of length nf  1(o * O) ~ f-'(~r * 1), i.e., ~r * 0 ~to" * 1. Similarly if T* C_ T we 

say that a level n of T* is f-differentiating (relative to T) if for cr of length n and 

T*(o-* r ) =  T(%), $0~rr , .  

(c) If f induces a projection F : [ T ] ~  [S] as above and T* _C T has infnitely 

many f-differentiating levels then there is a natural subtree S* = F(T*)which is 

the projection of T*: Suppose we have defined S* up to level n and for some cr of 

length n S*(~)  = S( r )  and we have a p such that f-~(p) = r and T(p) = T*(r/). 

Find the shortest po, p~ 3_ p such that f ~(po) ~ f-~(pl) and such that T(po) and 
T(pl) are on T* (these exist by our assumption on T*) and set S*(o-* r ) =  

S(f- '(p,)),  r = 0, 1. (For definiteness we can preserve lexicographic ordering as 

well. Uniformity guarantees that this definition is independent of the choice of po 

and pl.) It is clear that F* = F I[T*] maps [T*] onto [S*] and is induced by some 

appropriate f*. (With the above notation if T*(n,) = T(p,) then f*(n)= 
ith r/~ - 1.) 

DEFINITION 1.4. We can now define the notion of forcing ~ appropriate to 

5g. A condition P consists of a finite Lp C ~ with 0 E Lp, trees Tp,~ for 0 < i E Lp 

and projection maps Fp.i., : [Tp.i]--* [Tp.,] induced by functions fP.u as above for 

each i,j E Lp with i <  j such that the maps form a commutative system, i.e., 
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fP,,,k = fe,j,k °[p,~,i and so Fp, k,~ = Fp, j,, o F~,k,i for i < j  < k in Le. Note that for 

notational convenience we include To which is not a true tree but simply the one 

branch To(it) = 0 l'h L Similarly the maps fo,, are trivial, i.e., empty, foJ(tr) = 0 "h~ 

for i the < -least element of Le - {0}; the other foJ are defined by composition 

and of course F.,o(G)= • for every i, G. We say that Q refines P, Q <-P, if 

Lo D_ Le, To,, C_ Te,~ for i ~ Lp and Fo.j.~ = Fej,~ r[To,,] for i < j in Le. P and Q 

are compatible if they have a common refinement. 

DEFINITION 1.5. If P E ~ we adapt our general definitions of projections 

(1.3) in the obvious way. Thus for i < j in Le we say that or and r are congruent 
mod(i,j),  o- --~.jr, if tr =r~.,r (of course o- -o.~r for every tr, r and i) and level n 

of Tj is i-differentiating if it is fp.~j-differentiating. More generally level n of Tk is 

(i,j)-differentiating where i < . j < . k  if for tr of length n t r * 0 - , . ~ o ' * l  but 

~ r * 0 # j , ~ a * l .  We say that level n of Tk is simply a j-level if it is (i,j) 

differentiating for i the immediate < predecessor of j in L~. 

DEFINITION 1.6. Using the projection trees of Definition 1.3(c) we can define 

a Q =< P with Lo = Lp by specifying a T * C  Tp, k = T for k the <-greatest  

element of Lp as To.~ and then simply setting To., = F~.k., (T*) for i < k in L~. 

We must, of course, begin with a T* which has infinitely many/-levels for every 

0 < i <  k in L~. (Level n of T* is an /-level if for any o- of length n with 

T*(tr) = T ( r ) a n d  T * ( ~ * j ) = T ( z * p j ) ,  r*po=-,, .kr*pl but "c*po~,,kr*p~ for 

i' the <- immediate  predecessor of i in Le.) 

We can now begin to list the dense sets in ~¢ so that any ~¢-generic filter gives 

our embedding. We begin with the ones that define G,. 

DEFINITION 1.7. Totality: q~o consists of the sets 

D o . , = { P [ I t h T p , , ( g b ) > n f o r e a c h i E L e } ,  n e w .  

LEMMA 1.8. Each Do,n is dense. 

PROOF. Choose any tr such that l thf~.k((r)_  -> n for i and k the < -least and 

< -greatest elements of Le - {0} respectively. We define a Q _-< P with Lo = Lp 
and Q E Do,, by defining To, k C_ Tp, k and taking projections as in 1.6 above. We 

just set To, k = Ext(Tp, k, tr) where 

DEFINITION 1.9. Ext(T, (r) is the tree T* given by T*(r) = T(o- * r). [] 

DEFINITION 1.10. Extendibility: (~1 contains C¢o and the sets DI,j = 

{P ]j for j 



VOI. 53, 1986 INITIAL SEGMENTS 9 

LEMMA 1.11. Each Du is dense. 

PROOF. Let P E ~ and j E  Lp be given. We will define a Q =< P where 

Lo = Lp U {j} and To,, = Tp,,, fo,,.k = fp,~,k and Fo, k.~ = Fp, k,, for i < k in Lp and 

To,j = identity map on 6¢2. Thus to completely specify Q it suffices to define the 

required maps fo,~,k, i, k E Lo. Let l be the < -largest element of Lp. If l < j then 

we can simply define fo ,u (x )=2x .  All other mapsfo,~,j are just given by 

composition: fo,~,j = fo, t,j o f~,u. Otherwise let k be the < -immediate successor of 

j in Lo. We can define fo,j,t as any monotonic recursive map f such that {n [ level 

n of Tp,~ is an/- level  for i < k} C_ rg f  C_ {n [level n of Tp,~ is an/- level  for i < k} 

and such that rg f  is coinfinite in the latter set. All other maps are determined by 

the commutativity requirements: 

fo,,,, = f - lo  fo,,,, for i < j, 

- 1  o fo.j., : f o.j,, f for j < i 

(where we are using f-~ in the usual sense as a partial map from to to to). 

As these maps are clearly recursive monotonic and have ranges coinfinite 

where required O is a forcing condition refining P. [] 

Note now that if ~3 is cOl-generic then we can naturally define G~ for i E ~ as 

U{Tp,~(Q)] P E 5~ & i E L e }  and be assured that G~ is total for every i E ~ .  

Moreover, if i < j  then G~ <TGj via the Fe, u specified by any P E ~ with 

i, j E Lp. (In fact, it is clear that G~ <=, Gj.) It is our intention to specify additional 

dense sets to give a ~ _D q~ such that for any R-generic q3 the map sending 

i ~ deg(G~) gives an order isomorphism of ~ onto an initial segment of @. To 

facilitate the descriptions of these dense sets we first define forcing. 

DEFINITION 1.12. Forcing. For any P E ~ and any sentence ~b of arithmetic 

with finitely many set parameters G~, i E Lp, we say that P forces ~b, P II- ~b, if for 
any G on Tj,~, ! the < -largest element of Lp, ~b(G~ . . . . . .  G~.) holds of the sets 

Fr, u , (G) , . . . ,  Fe, u. (G). [Or equivalently in this setting if, for any qgl-generic 

containing P, 4, is true for the appropriate G~ associated with ~d.] 

Now for the various dense sets required. 

DEFINITION 1.13. Diagonalization. c¢2 contains ~1 and the sets Dz,e,,,i- 
{Q I j ~  i - -~Q IF--n (~b, a '=  Gj)} for e Eto, i, j E ~ .  

LEMMA 1.14. ThesetsD2,,,~,jaredense. Indeedi f i ,  j E L e w e c a n f i n d a Q < = P  

with Lo = Lp and Q E D2,,,u. 
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PROOF. Let P E 9', e E to, and j ~  i be given. By Lemma 1.11 we may as well 

assume that i, j ~ Lp. Let l be the < -largest element of Lp and or a string on a 

j-level of Tp, t. Thus tr * 0~j.~o" * 1 but or *0-~.tor * 1. Suppose then that 

- 1  - 1  Tv, j (~v,j,,(or * ))(x) ~ Tv.j(]:v.,,,(or * 1))(x). 

If there is no ~- on T~,i extending -1 ,. Tp,, (fv.~,(or • 0)) ( = Tv., (f~l ,(tr • 1)) = 
TJ,.,(f~,~.z(or)) by choice of or) for which th~(x)~ then the condition Q <_-P 

specified by setting Lo = Lv and To.t = Ext(Tv.a, or) forces ~b~,(x) 1' and so is as 

required. Otherwise let r = Tv,, (p) be be such a string. Choose k E {0, 1} such 

that 

d~ :(x ) ~ Tv.~ (f2,,(tr * k )) (x ) 

fp,~,~(T/) = p. If we now let Q-<_ P be determined by and ~ /_  or .  k such that -1 

setting Lo.~ = Ext(Tv.~, ~/) we see that Q II- ~- c_ G, and so Q II- ~b ~,(x) = ~b ~(x) 

whilewealsohaveQl~-Tvj(f-v~,t(o*k))C_GjandsoQl~-dp~'(x)~ ~ G j ( x ) .  [] 

DEFINITION 1.15. Initial segments. ~3 contains ~2 and for e ~ to, i ~ ~ the 

sets 
G . ,  

D3.~,, = {Q J for some j ~< i, Q II- ,b~ 'is not total or ~b~'--T Gj}. 

LEMMA 1.16. The D3.~,~ are dense. Indeed if i E L v  we can find a Q <= P with 

Lo = Le and Q ~ D3.~.i. 

PROOF. Let P E ~,  e E to, i E ~ be given. We may, of course, assume that 

i ~ Lp and let l be the < -largest element of Lv. Moreover we may assume that 

for every tr and every x there is a z _D or such that the condition P '  specified by 

refining the top tree Tp,~ of P to Ext(Tp.t, ~-) forces cka,'(x)~. (Otherwise the 

condition Q specified by refining Tp.~ to Ext(Tp.t, or) forces $~'(x) 1' as required.) 

We now need a definition. 

DEFINITION 1.17. (or, z) gives an e-splitting (of p)  on T [for S] if p C_ or, ~- and 

there is an x such that $~t*)(x)$ # $~t ')(x)~ [and or---tr where [ induces a 

given map F : [T]---> [S]]. We call the pair (T(or), T(~')) an e-splitting (of T(p)) 

on T [for S]. 

SUBLEMMA 1.18. Suppose now that [or some p no pair (or, z) gives an 

e-splitting o[ p on Tv., for T~.~ (j < i, j ~ Le) and Q <= P is given by refining T~.~ to 
Ext(Tv.,, ~/) where/~.l~,,(r/) = p then Q I~- ck ~' <= G~ or $ a , is not total. 

PROOF. Let ~d be any qgrgeneric filter containing Q. Suppose ~b~, is total. 

Thus for each x there are or and z such that ~r = To.~(z)C_ G~ (and so 
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To,j (fol, j,,(~'))C_ Gj) and ~b;'(x)~. As there are no e-splittings on To,, for To,j any 
T o i ( ' r ' ) /  --1 t 

r '  for which ~ b  e ' [X)~, and To.j(fo,j.~(~" ))C Gj gives the same answer as 

qb~(x) = $~e'(X). (Otherwise we could extend the shorter of ~', z' (say ~') to ~-" of 

the same length as the larger by copying over a final segment (of z'). The pair 

(z', ,") would then give us an e-splitting of p on Tp,~ for Te.i contrary to our 

assumption.) Thus we can compute C~e'(X) by simply finding any such ~" - -  a 

process clearly recursive in G~. [] 

Now let j be the <-least  element of Le such that for some p there are no 

e-splittings of p on Tp, i for Tej. Let P'_-< P be given by refining Te.~ to 

Ext(Te,, o-) for a t r  with f;,li,~(o') = p. Thus P'  II- ~b~,_-<TGj or 3xqb~,(x)  t .  We will 

now define a Q < P '  with Lo = Le, = Lp such that Q II- ~b~, =TG~ or ::lx$~,(x) 1'. 

The idea is to make To,~ an e-spli t t ing tree for ], i.e., Vtr, ~" ((tr, z) give an 

e-splitting on To,~ <::> tr #j,~ 7). We have, of course, already insured that if ~r -j,~ ~- 

then they do not give an e-splitting on Tp,,~ and so not on To,~ either. We can 

then use $ ~' to determine the path taken by Gi modulo j, i.e., its projection on 

To.j and so Gj. 

To specify Q it suffices to appropriately define a T* C_ Te,,a = T with infinitely 

many k levels for every 0 < k ~ Le. We define T* inductively level by level. 

Suppose T*(o') is defined for or of length n. Let ~0, trl . . . . .  tr2o_l list the strings of 

length n and suppose that we have {~s j s < 2 n } such that T*(tr,) = T(~',) with the 

r ' s  all of length m. Suppose we now need a k-level in T*. Consider first the case 

j < k. Let m~ + m be the next k-level of T and set T*(tr, * r) = T(7, * 0"~ * r) for 

r = 0, 1. Next suppose k < j. We will define for r = 0,1 increasing strings p,,<s,,> for 

s, t < 2 ~-1 such that ( f - l (~ . .  po,,,,>), f - l ( ~ . ,  pl,,,,~)) where f = fp, u gives an e- 

splitting on Te,,~ for Te,,k, where k'  is the < -immediate predecessor of k. Thus if 

T*(tr,  * r) D_ T(z~ * p,.2 . . . .  1) we will have all the required splittings. We begin with 

p,,-~ = O. Suppose we have defined p,.<,,,,,> =/z,  and the next step is (s, t). We first 

find ~o, rh such that (f-~(z~ */Zo* ~o),f-l(r, * ~o* rh)) gives an e-splitting on Te,,~ 

for Te,,k, with witness x. We then find an r/2 such that Ext(Tpu, z, */z~ * rh) forces 

~b~,(x) to have some particular value. For definiteness say it differs from that 

forced by z, */Xo* ~/o. We then set po,<,,,> =/x0* 7/0 and pl.,,o =/zl  * r/2. We now 

have p~,2 . . . .  ~=u,  for r =0 ,1 .  Let m, be minimal such that mo+l thuo = 

ml + lth Vl is a k level of TPu. We set 

T*(o's * r) = T(~', * u, * 0 "r * r). 

This completes the construction of the splitting subtree T* of T and specifies 

Q < P'  by requiring that To,~ = T*.  
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Suppose now that ~d is ~-generic ,  Q E ~ and ~ ~, is total. We must show that 

Gi -<T$~'. Assume inductively that we have found the p of level n such that 

Toj(p)C_ Gj. To decide which of To.j(p*O), To.j(p*l)C_ Gj go to the first 

k-level, m, in T* = To., after length fo.,.,(p) for a k < j .  Let {~rs Is < 2  m} list all 

fo.j,~(~r) = O. Let g = fo,,,~. For each s, s' < 2 ~ the elements a of length m with -~ -~ 

(g-~(o-, *0), g-l(o',,* 1)) gives an e-splitting on To., Only one of the answers can 

agree with ~b~' and so one may be discarded as a possible beginning of G,. By 

going through all such pairs we can eliminate either all the o-s * 0 or all the or, * 1 

as possible beginnings of G,. Whichever r of 0 and 1 is not so eliminated gives as 

our next step g - l ( o ' s  * r) = p * r C Gj. [] 

This proof actually shows that for every P, e E w and i ~ Lp there is a O < P 

(with Lo = Le) such that there is some x such that O I~- $~,(x)~' or To., is an 

e-splitting tree for some j < i. Given any e we can find a k such that for every A, 

$#(x)  ~, iff ~bA(y) ~ Vy < x and in this case ~b~(x) = A (x). Applying the above 

refinement procedure to any P, i G Le for k produces a O such that for some x, 

O It- d~ ~,(x) ~ or To.~ is an k-splitting tree for i. In the latter case it is clear that 

O It-($~,(x)~ for infinitely many x) and so O II-~bff, is total. 

LEMMA 1.19. Totality of  reducibilities. For e ~ ~, i ~ ~ the sets D4x, i = 

{O l O I~-(0b~' is total) or for some x O It-6~'(x)'~ } are dense. In fact if i ~ L e ,  

O ~ D4.~., with O <= P and Lo = L~. [] 

PROPOSITION 1.20. tt-Reducibility. Let ~4 D_ ~3 and all the D4,e,i. If c~ is 
~4-generic and A <=TG~ (for any i) then A <=,,G,. 

PROOF. Say A = ~b ~,. Let Q E ~ fq D4.e., so Q IF ~b ~, is total. As G, is on To,, 
and ~b ~ is total for every G on To, i (as all such are G, for some ~l-generic ~)  we 

can find a k such that ~b~, = ~b~, and ~b~ is total for every G:  To compute ~b~(x) 
G x compute ~b, ( ) and look for an initial segment of G not compatible with To., If 

the former converges first give its answer as output. If the latter, output O. [] 

The point of this proposition is that it guarantees that our embeddings will 

simultaneously be ones onto initial segments of the wtt and tt-degrees. 

THEOREM 1.21. I f  ~ is ~4-generic then the mapi  ~ d e g , ( G , )  is an order 

isomorphism onto an initial segment of  the r-degrees for r = T, wtt or tt. 

PROOF. ~-generici ty guarantees that if i < j then Gi-<--,, G~. qg2-genericity 

guarantees that if i ~  j then G, ~T Gj. ~3-genericity guarantees that if G _-__r Gi 

then G = r  Gi for some j < i while ~4-genericity guarantees that if G ----T G~ then 
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G <=, G~. Thus the G~ give an initial segment for any degree relation between tt 

and T. [] 

Our goal now is to extend this result to linear orderings ~*  of size 1~1 with least 

element 0 and the countable predecessor property. We begin by dividing ~*  up 

as U . . . .  Lee where { ~ }  is a monotonic continuous sequence of countable 

downward closed suborderings of L¢* with no last element. Our plan is to define 

a class c¢5_D ~4 of dense sets and a sequence of forcing notions ~ ,  each 

contained in the one generated for Le~ above, and corresponding cOs-generic 

filters ~d~ C_ ~ such that the ~ form a continuous monotonic sequence. Given 

any such sequence {~do} we can then define the map i ~ deg(G~,~) for any a with 

i E 27~. This map, of course, then gives an isomorphism of L e* onto an initial 

segment of the degrees. 

The idea is to put into ~+1 only those conditions associated with LP~+I which 

are already appropriately represented in ~d~. To define the method of repre- 

senting a P E ~÷1 by a P ' E  ~ we first need some notation. 

DEFINITION 1.22. Let P E ~ be a notion of forcing appropriate to some 

and let 4' be an < -preserving partial 1-1 map which maps Lp onto L _C ~,  with 

4'(0) = 0. 4'(P) is the Q E ~ with Lo = L, To,, = Tp,~ 'o~, Foj,~ = F~,~-'u~,,-'~o and 

fo.~,j = fe,,-'o~,,-'o~ for i , j  E Lo. In particular, we can restrict a condition P to a 

smaller ordering L _CLe in the obvious way by setting P IL  = 4'(P) where 

dom4'  = L and 4 ' I L  = i d I L .  Thus, for example, for every P and L C_ Le 

P <--PIL and so generic filters are closed under restrictions. 

We can now define our ~ ,  ~d~ by induction. Let ~o be the notion of forcing 

defined above for ~0, Suppose ~ is defined. Let ~ be a c¢5-generic filter for ~ 

(we will verify later that one such exists by induction). Now let ~ +1 be all those 

conditions P in the notion of forcing for LP~+~ for which there is a P'  E ~ and a 

one-one partial map 4, such that range 4, = L~, 4, I ~  tq Le = id and 4,(P') = P. 

Of course for a limit ordinal h we set ~ = U~<~ ~ and ~, = U~<~ ~ .  

The crucial step now is to define the class of dense sets needed to make 

c¢5-genericity of ~o imply the existence of a c¢5-generic ~d~+l C_ ~÷1, The density 

of the D0,~ (totality), D2,,.j (diagonalization) and D4,,,~ (totality of reductions) in 

~o+1 follow immediately from the corresponding genericity requirements on ~d~. 

Problems arise only for the D~,~ and D3,,,~. 

Consider first an R ~ ~+~ with witnesses R '  and 4, as in the definition of 

~+1. As R ' I d o m 4 ,  E ~ we may as well assume that Ln ,=dom4, .  Let 

{il . . . .  , i,} = Ln f3 L#o = 4'-I(LR fq ~f~)C_ Ln and let {], . . . .  ,j,} = 4,-1(Ln - ~ )  

be the rest of Ln,. Given an i ~ L~+l - L~ we wish to find a Q =< R, Q ~ ~+~, 
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with i E Lo. If i < jl then as jl E ~ ,  and LP, is downward closed, i E ~ and so 

there is no problem. We can simply choose any Q'  -< R' ,  Q'  E (g~ with i E Lo,. 

We can then define ~b by ~b(x) = x for x E Lo,, x < i and ~b(j,) = ~b(j,) for t -_< n. 

Q = ~b(O')E ~+~ by definition while i E Lo and Q =< R as required. If, 

however, j~ < i there are problems. 

Suppose first that i E 2?5. We can, of course, find a Q'  <= R '  with Q'  E cg, and 

i E Lo,. We cannot, however, extend ~b to ~b by setting ~b(i) = i to get tp(Q') = Q 

as ~b would then not preserve order or not be one-one. Thus we must also add on 

to Lo, new elements k~ . . . . .  k, all > i to represent the elements of LR -- ~ .  We 

could then hope to set ~b(x) = x for x <<, i, x E Lo, and ~b(k,) = th(j,) for t =< n to 

get an element Q of ~+1 with i E L o .  The requirement that Q_-<R thus 

becomes one that O(Q')<= R '  where O(k , )=j , ,  t<= n and 0(i , )= i, for t -< s. 

Now if i~L~+~-L ;~  then we must insert an additional k into the list 

kz . . . . .  k, at the appropriate, say ruth, place. To do this it suffices that there be 

room for such an insertion since we can then just apply the extendibility property 

of ~ .  All these considerations lead to the definition of the Ds.L,m,,,R below. The 

point is that if cg~,s genericity requirements include the Ds,Lm,~,n, then the D~,~ 

will be dense in ~+1. 

Next suppose (with R, R' ,  ~ as above) that we are given an e and wish to find 

a O =< R, O E ~ + l  which for some i E Lo, i < ~ (j,,) forces [$e c,,,~ is of the 

same degree as G~ or is not total]. We cannot simply take any O'  <- R '  which for 

some i E Lo,, i ~ j,, forces [~,%~ is of the same degree as G~ or is not total] since 

that i may not be in dom ~b. Indeed it may not be possible to extend ~b to include 

i in its domain (e.g. ]1 < i <j2 but ~x($( j t )  < x < ~b(j2))). Thus we must find a 

O' E c~, with possibly new elements k l , . . . ,  k, C Lo, to represent LR - ~ such 

that for some i E Lo,, i < k,,, O'lF~b °~--= G~ or is not total. The crucial point, 

however, is that we must be able to define a 0 on all of Lo, with 0(k,) = $(j,) to 

give us a condition O = O(O') < R such that O E ~ + l  and O IF ~ ,  °*u-' --- Go~o or 

is not total. If the {kl . . . . .  k,} form a final segment of Lo, then we can define 0 by 

O(k,) = qb(j,) and 0 (x )=  x for x ~ L o , ,  x < kl. The requirement that O = 

O(Q')<= R then becomes that ~ ( Q ' ) <  R '  where $(k,) = j,, t < n and ~(i,) = i,, 

t<=S. 

These considerations lead to the definition of the DS,L,m,R,e below. Again if the 

genericity requirements of qd~ force it to meet each Dsx,,.,R,, we will be able to 

prove that the D3,e,i a r e  dense in ~,+1. 

We revert now to our original notation so that ~ is the notion of forcing 

associated with a countable ordering L#. 
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DEFINITION 1.23. Amalgamation. ~5 consists of ~4 plus for each i E ~,  each 

finite LC_~,  L - - { j l < . . . < j , } ,  each m_-<n and each R ~  with L a final 

segment of LR the sets 

DS,L, , , , , i .R = {Q [ Q is incompatible with R or 

[Q<=R & ( 3 k o < k l < ' " < k , ,  < k  <km+~<. . .<k,+l  in Lo) 
(j,, i < k o  and if we define &(ks)=j~ for l<-_s<-_n and 

&( l )=  l for l E L R  L then ~b(Q)-<_R)} 

and for each e E o the sets 

Ds,c,,~,R,e = {0  [ Q is incompatible with R or 

[Q _-< R & (3kl  < k2 < " "  < k, forming a final segment of Lo) 

[j. < kl and if we define &(k,) = js for 1 _-< s _- n and 

~b(i)= i for i C L R - L  then dp(Q)<R & for some i E L o ,  i 4 k m  

Q It-(be Gm is not total or (be Gm-T a,]}. 

The combinatorial fact needed to prove that these sets are dense is given by 

the following: 

LEMMA 1.24. For any P @ ~ with { i l < " ' <  is}=L a final segment of 

Lp ={j~,. . . , j~}O L and any k ~ < " "  < k~ with is < kl there is a Q <= P with 

{kl , . . . ,  k,} C Lo such that oh(Q) <= P where &(k,) = i, for t <= s and 4) [ Lp - L = 
id. 

PROOF. To refine P (without regard to extending Lp) just means to give a 

subtree of Tp,~ which has j and/-differentiating levels for each ], i E Lp as the 
trees for the other elements of gp and the associated maps are then all 

determined by the projections associated with P. If in addition we wish to extend 

Lp to Lo = Lp U {ki , . . . ,  ks} we must define To.k~ and the maps giving To, k,, t < s, 
and the relations to the To,~. If we are to have 4)(O) = < P as well, then To,k, must 

be a subtree of Tp,~, and the To.k, (and associated maps from To, k~) must be given 

by the maps from Tp,~, to Tp.~,. Thus to specify O it suffices to properly define 

T"-- To,,~ and T ' =  To, k~ (each subtree of T = T~.~,) and fo,~,k~ = f as the rest of 

the condition will be determined by the existing maps and. commutativity 

requirements. A key point here is that fo,~,,~, is to be determined by composing f 

with the projection from T ' =  To, k, to To, k, by the map f~,~,,~,. Thus levels in T' 

dedicated to i or j differentiations must involve splits which in T are not 

congruent mod i~. 

We begin by setting T ' ( O ) =  T"(Q)= T(O). Suppose we have defined T' and 

f-~ up through level n, lth (r = n, r ' ( ~ ) =  T(c~), f - ' ( ( r )=  z, r" (z )= T([3) and 
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g - ~ ( a )  = g-~(/3)* 0 ~ for  some y where  g = fp.~,,,. We define the next  level of T '  

by cases: 

(i) We need a j- level  for  j E Lp - L. Let  ml > lth a, lth/3 be least such that  mi 

is a j - level  of T. Now set, for  r = O, 1, 

T' ( t r  * r) = T ( a  * 0 ("'-''h°~ * r), 

T " ( r * r ) =  T(/3 * 0("-"h~)* r) and 

f-1(o" * r) = ~" * r (so f(I th z)  = lth tr). 

It is clear that  Ith o- is a j - level  in T '  and 

g-'(Ol *0 (ml-ltha)* r)---~ g-l(/3 , 0ml-lthlS, r). 

(ii) We need an / - l eve l  for  i E L. Let  mt > lth a, lth/3 be least such that it is an 

/-level in T and let m2 > m t  be least such that  it is an /l-level in T. Now set 

T ' ( t r  * r)  = T(oz * 0 ~- ' '"  ~ * r), 

T " ( r * r ) =  T ( / 3 * O " ' - ~ ' " ~ * r * O  "~- ' ' )  and 

f- ' (o-  * r) = z * r (so f( l th  r )  = lth tr). 

Again it is clear that lth or is an /-level in T '  and that 

g ' ( a  *0  m~-`'":* r) = g '(15 *0  ml-lth/3* r *0  "~ m,). 

(It is here  that  we see the effects of having to work  within the < is-differentiating 

levels of T to get ones that  are < i ,-differentiating in T' . )  

(iii) We need a k,-level for t < s. Let  ml > lth a, lth/3 be the next / , - l eve l  in T. 

Set T ' ( c r * r ) =  T ( a * O m ' - " h ~ * r )  and f l ( c r * r ) =  ~- (so l t h o - f f r g f ) .  Of course 

lth tr is now a L- level  in T' .  The  twist in this case is that g-~(a  * 0"~ ,the. r) = 

g-~(/3)* 0 y where  y is the number  of e lements  be tween  lth/3 and m~ in the range 

of g. 

We now define a condi t ion O by setting Lo = Lp U {kl . . . . .  k,},  To, k, = T' ,  

To, i, = T",  fo,i,,k, = f and all o ther  trees and maps are given by the project ions  

de te rmined  in P and commutat iv i ty  requirements .  As To, is C_ Tp, i, and the rest of 

O r Le is defined by the project ions  in P it is clear that  O -<- P. 

We next  claim that  if 4 ' ( 0  = i for  i E Lp - L and th(k,,) = i,, for  m < s then 

th(O)---- P. The  definitions clearly show that T,~o),~C_ Te,~ for  1 E Le = L,~o) and 

that the maps be tween  trees within Le - L or L are the restrictions of those in P. 

Thus  we need only check the maps be tween  an e lement  in Lp - L and one  in L. 
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By commutativity it suffices to check that F,~o),~,,i, = Fo,k,,~, = Fzi,,i, [ To, k,. Now 

by definition 

Fo ,  k,,j. = Fo,;,,j, o F o ,  k,,i. = Fp, i,,i. o Fo ,  k,.i," 

But this is guaranteed to be Fe,~,i, I To, k, by the part of our construction that says 

that at infinitely many levels n (all except k, ones) we have for lth tr = n, ~', c~ and 

fl such that Wok (o-)= Te,,s(a), To, i , (r)= Te,,,(fl), ~ -~ , ,  fo,,,,k,(o') = r and fe,j~,,,(a)= 
- 1  fzi.,,,(#). The point here is that 

1 O - 1  - -  - 1  - -  1 1 fo.,,.,, - fp,,o,,,(/3) = fe, j., (a)  

which gives Fe.~,j° I To, k,. [] 

LEMMA 1.25. The Ds,L,m,~,n are each dense. 

PROOF. Let  L0, too, io, Ro be given as in the definition of Ds,L,m,i,R and 

consider any P '  E ~. If P '  is incompatible with Ro, P '  E D~,L ..... ~o,Ro. Otherwise 

let P be a common extension. Let L = {il < • • • < i,} consist of all elements of Lp 

which are ~ any of L0. Now choose ko < • • • < ks.t with ko >~ io, max L and such 

that 3k, So, s~(k~o<~ k <~ ks, and /so =J,,0 and apply Lemma 1.24 to get a Q =< P 

with 6(Q)<=P where Vt<=s(6 (k , )= i , )  & ~ b I L e - L  =id .  By the proof of 

Lemma 1.11 we can get a Q'<=Q with L o , = L o U { k o ,  k,k,+~} such that 

Q'I Lo = Q. Thus Q ' <  P < P' ,  4~(Q') < P < P '  and Q '  is our desired extension 

of P '  in Ds,Lo,,,o,io.Ro. [] 

LEMMA 1.26. The Ds,L.m,R,, are each dense. 

PROOF. Fix Lo, mo, Ro and eo as in the definition of Ds.L,,~.R,~ and consider any 

P ' E  ~. Again we need only consider the case where we have a common 

extension P of P' and Ro. Let L = {i~ < • • • < i~}, kl < • • • < k, and Q be as in the 

proof of Lemma 1.25. Now let Q ' =  Q [(LRoULe, U{k,, ,k~ . . . . .  k~}) where 

is, = j~. Thus Q '  =< P' ,  Ro and ~b(Q') =< Ro where ~b (k,,) = ]t and ~b [ LRo - Lo = id. 

Let s~ = j, eo = c and apply Lemma 1.16 to get a Q" <= Q' with Lo,, = Lo, such 
G k  G k 

that for some i ~ L o , , ,  Q"lk~b~ J--TG~ or ~b¢, is not total. As Lo~=Lo, ,  

{k,, . . . . .  k~} is a final segment of Lo,,. Moreover,  as Q'_-< Q', tb(Q")_- < ~b(Q')_- < 

Ro as well. []  

We now know that there are ~5-generic ~o for ~0. The next step is an 

induction on a. We have already motivated the proofs of density for the Do.~, 

D L i ,  D2,i,j, D3.e,i and D4,,.~ in ~+1 based on the qG-genericity of ~d~. The new idea 

needed is that although the additional requirements in ~5 were designed to 

prove these facts they also suffice to propagate themselves. The proof that the 
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D5,L,m,i,R are  dense in ~+~ is basically a straightforward application of the same 

genericity requirement in ~3~ to the representative P' (and 4~) in ~3~ of a 

condition P E ~ . ~ .  For the DS,L,m,R,e o n e  really needs pictures. Roughly 
speaking, however, one first applies one instance of these requirements on level 

a to move the representative ~b- l (L)  in P' out to the end (making no use of the 

initial segment requirement). One then applies another instance of these 

requirements (this time we need the initial segment restriction as well) to 

produce yet a further refinement which contains a copy of the representatives of 

Lp - 5¢,~ in P' followed by these new elements as a final segment of the resulting 

condition. This condition in ~3~ then represents the required Q =< P. 

LEMMA 1.27. If ~g~ is ~5-generic for ~ then there is a ~o.~ which is cgs-generic 
for ~ + l .  

PROOF. We must show that each of the required sets is dense in ~ . ~ .  

Consider P E ~+~. Let P ' E  ~ and ~b be as in the definition of ~ . ~ .  

(a) Do,.. Let O'_- < P'  be given by q~o-genericity of ~3~, i.e., Q ' E  ~3~ n Do,.. 
¢ ( Q ' ) <  ~b(P ' )=P  and ~b(Q') is clearly in Do,.. Thus ~b(Q') is the desired 

element of ~ . ~  N Do,, extending P. [] 

(b) D~,j. Let L = { j ~ < . . . < j , }  be the final segment of P'  containing 

First suppose j E ~ £ ~ + ~ - ~ .  Let m be such that ~b(jm)<j<~b(jm÷~) and 
choose O'  <= P' with Q' E ~ n Ds.L,m,~,e, (i = j.). Thus if q~' is as in the definition 

of Ds,L,,.,~,P,, dp'(O')<= P'. Thus ~b~b'(Q') < ~b(P')= P. We now extend ~b~b' to ~b 

by setting ~b(k) = j. Thus ~ ( 0 ' )  <= P, j E L,~o,) and by definition ~b(O') ~ ~ . ~ .  
Next suppose j ~ ~ . .  Choose Q ' <  P'  with Q ' ~  ~g~ O Ds,~,o,~,e, with ~b' as in 

the definition of Ds,~,o,~,e, so that ~b'(O')= < P'. Thus qb~b'(Q')= < ~b(P')= P. Now 

choose Q" =< O'  with 0 "  ~ ~ O D~,i. Thus ~b~b'(Q") < P. Extend ~b~b' to ~ by 

setting ~b(j) = j, so ~b(Q") _-< P, j ~ L,~o,,) and ~b(Q") ~ ~ . ~ .  [] 
(c) D~,~.,,~ for j ~  i. We may assume by (b) that i,j ~ Le. Choose Q'_-< P' with 

Q ' ~  ~ O D2.,.,-,t,).,-,o). ~b(Q')~ ~÷~, ~b(Q')_-< ~b(P')= P and clearly 

th(O')lF-n (th~ ,= G,). In fact, 

NOTE 1.28. If ~b(P') = P ~ ~,+~ and • is a sentence mentioning only G~ for 

i E dom ~b and P'  IF • then by the definition of forcing q~ (P') IF ~b (~)  where ~b (~)  

is gotten by replacing each G~ by G,~o. [] 

(d) D3.,.,. We may assume by (b) that i ~  Lp. Let {j~ < . . .  < j , } - -L  be the 

final segment of P'  containing ~ b - ~ [ ~ + ~ - ~ ] .  Choose Q'<=P' with 
Q'  ~ ~3~ n D~.~.,~.e,, where jr. = ~b-~(i). Again we let ~b', {k~ < . . .  < k,} and i' 
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witness that Q ' E  Ds,L,,.,e,,. so that q~th ( Q )  = P. We now extend thth' to a ~b 

defined on all of Lo, by setting q,(j) = j for j < k~, j E Lo,. Thus $ ( Q ' )  E ~+1 
G k 

and $(O')<$qb'(Q')<=P. Finally as O '1 t -$]  ~- is not total or $ .  ~ - rG , , ,  

~ (Q ' )  I~- ~b~, is not total or ~b~'- G,~,). [] 

(e) D4,~,,. Choose any O'_-< P'  with Q ' E  D4,e,,-,,) A ~ .  t,b(Q')--< th(P') = P, 

Q = $ ( Q ' ) E  ~+~ and as Q'  IF $~*-'"' is total or, for some x, Q'  It-6]* '~,~(x)1', 

Q II- ~b~'(x) is total or, for some x, G It- GeC,(x) 1' as required. [] 

(f) D~,L,~,~,R. We need only consider the case that R and P have a common 

refinement S ~ ~ ÷ l .  Let S', th show that S E ~÷~. Let L'  = {i~ . . . .  ,ft.} be the 

final segment of Ls, beginning with ~b-~(j~) = j'~. Let m' be such that ~b (/",) = jm. 

Let i ' = i  if i ~  and otherwise set i '= f i . .  Now choose a Q ' < S ' ,  
Q ' ~  ~ A Ds,v,m,,~,,s, and let ~b',k( . . . . .  k ' . , k '  be the appropriate witnesses. 

Thus $ ' ( O ' )  <-- S' so ~b$'(Q') _-< S <_- R, P. Now choose any appropriately ordered 

. . . ,  k '  kl, k , . , k  with i,], < kl and extend ~b to $ by setting $(  ~)= k,. Now 

Q'_-< S' and so $(Q')_-< ~b(S') = th(S') = S < R and ~b(Q')@ ~÷~. Of course, 

l'.,i < k~. Moreover if we define 0 by 0 ILR - L  =id  and O(k,,))=j~ for t(s) 
such that 4'(J[t,)) = j, then 0, k,o), . . . ,  k,,) and k witness that ~b(Q') @ D5,~,m.~.R. 
The only point left to verify is that O($(Q'))<-R. Now (O$(Q'))IL~ = 
(~bck'(Q')) I LR and so as ~b~b'(Q') _-< R, O(~b(Q')) <-_ R. (Verification: If i ~ L~ - L 

then (0~b) t ( i )=  ~b ~O-~(i)= ~b-~(i)= th-t(i) while (th~b')-~(i) = (t~') ~th-~(i)= 

~b-l(i) since ~b' is the identity on S ' -  L'3_ $-I(LR -- L). If i ~ L then i = .h for 

-' k some s and ~b-~0-~(j~)= $ ( , . ) )  = k,'~o while (~b')-~b-~(j.)= (~b') ~(j:~,))= k;~).) 
[] 

(g) D~,a,.,,R,.. Again we let S =< R, P, S ' G  ~ and ~b witness S U ~+1 and 
L ' =  {q~-m(j~) . . . .  , q,-~(j.)} = {jI . . . . .  j'}C_ L~,. Note that at the cost of replacing 

S' with S' Idom ~b we can assume that Ls, = dom 4,. Now choose Q ' <  S' with 
Q ' ~  ~3~ fq Ds,v,m,a,,. where LR, = qS-~(LR), L ' =  6 - ' ( L ) = { j ,  . . . .  ,j'.} and R ' =  

S'ILR, (SO ~b(R' )<R) .  Let ~b' and k l , . . . , k "  be the required witnesses: 

~b'(k',) = j;  = ~b-~(j.), ~b'(i) = i for i ~ L a , -  L '  and ~b'(Q') =< R' .  Next let 

L " =  ~b- ' (L~ .+~-~)U{k[  . . . .  ,k'.}, LR.=Ls,  U{k[ . . . . .  k'.} and R " =  Q' tLR.  

(so th'(Q' [ LR.) <= R'). Next choose O" < O'  with Q" E ~ fq Ds,v,,.~,,,R.,e where 

k"  is the m"th element of L". Let { i i , . . . ,  i',} = d~-l(~+~-G;~), {i~ . . . .  , i,} = 
• t t  • t t  t !  t p  Ls (7 (Le~+~- ..~) and let qb", t~ , . . . ,  t , ,  k~ , . . . ,  kn and io ~ Lo,, be the witnesses 

for Q" : 4~"(i") = i;, 4~"(k") = k;, qb"(i) = i for i E L R . -  L" = 
Ls,-$-1(d£~÷~-See) and ~"(0")<= R". We can now define a P " ~  ~ ÷ l  with a 

witness $ such that $(Q")= P" by setting 6 ( i ) =  i for i <  i7, 0 ( i " ) =  i, and 
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to(k~) = k, where we can choose any kl . . . . .  k, in .:.~a+l- ,~a above all elements 

of Ls. We claim that P" =< S _-< P and that P" E Ds,L,,,,R,e as required: 

(i) P"=< S =< P:  We know that  ~b"(Q")_ -< R"-_  < S' and so ~b~b"(O")_- < ~b(S') = 

S. Thus it suffices to prove that ~b~b" = to on to-t(Ls). If i E Ls, i ~ £g,, (i.e., i < i'~) 

then all of tO, 4~ and ~b" are the identity on i. Consider then some i, ~ Ls N 

( ~ + ~ -  Le~). to-~(is) = i'~ but ~b,~"(i'~) = ~b(i:) = is as well. 

(ii) As O" IF (4), °k~ = r G~ or is not total), to (Q") = P" II- (~b ok  _= G,t~) or is not 

total). 

(iii) Let  to'(ks) = j,, to'(i) = i for i E L ,  - L. We must show that to'(P")_--- R 

to finish the verification. 

The preimages of to'(P") t LR in Q" are given by j, ~ k'~ f o r / ,  E L, i ~ i for 

i E (LR - L )  f3 Le~ and i, ~ i" for i, E (LR - L )  - Le~. We claim that ~ $ ' ~ "  is the 

inverse of this map so that $~b'$"(Q") I LR = to'(P") I LR : 

(1) 4~b'q~"(k") = thq~'(k',) = 4~(]:) = is for j, E L. 
(2) 4~b'~b"(i) = ~b~b'(i) for i E L R . - -  L" = Ls , -  ck-~(~Le~+~- ~ )  

= $ ( i )  if i ~ LR, -  L '  = $ - ' ( R ) -  6 - ' ( L )  as well 

= i  if i E L e .  

thus $~b '$" ( i )=  i if all of these conditions hold: i E L s ,  fqL~,A 

Z e ~ - ~ b - ~ ( L e ~ + l - ~ ) - $ - ~ ( L )  but L~,C_Ls, and LR,=$-~(LR)C_Le, SO we 

need i ~ LR,-- ~-~(~+~ -- ~ , ) - -  $-~(L). Now ~b = id on L~ f3 L~o so 

LR, - ~b - l ( ~ a +  1 - -  ~a(~, ) = Ln fq ~ , .  

Thus we need i ~ LR fq ~ - ~b-~(L) but again on ~ ,  ~b -~ = id and so this is the 

same as i ~ (Le - L )  (1 ~ .  

(3) $ ~ ' ~ " ( i " )  = ~$ ' ( i ; )  for all s =< t 

= ~b(i~) for i's~ L , , -  L'  

=i,  for i , ~ L s - ~  

so ~b~b'~b"(i") = i, if is ~ La - L - ~ga. 
Finally we have $" (Q" )  <= R" = Q' [ Lg,, and so $ ' 6 " ( Q " )  =< '~ ' (Q'  [ L~,,) < R '  

and at last ~b~b'&"(Q") =< ~b(R ') = R. [] 

THEOREM 1.29. I f  Le* is a linear ordering (with least element) of size I,I~ with 

the countable predecessor property, then there are G~ for i ~ 5g* such that the G~ 

give initial segments of the T, wtt and tt degrees isomorphic to ~* .  

PROOF. Define E'~, ~ and ~ as described above. (Note that ~ = 

U,<~  ~g~ c_ ~ = U ~<~ ~ ,  is ~ -gene r i c  by the monotonici ty  of the sequence and 

the ~-gener ic i ty  of each ~d~, a < ;t.) The G~ are then given also as described 

above (G~ = U e ~ T e , , ( ~ ) ,  U~<, l  ~ = (g). As in the countable case the c~4- 
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genericity of each qd, guarantees that the G~, i E ~ ,  give an initial segment of 

each type of degree isomorphic to ~7~. Thus their union gives one isomorphic to 
~* .  [] 

2. Countable upper semi-lattices 

Our goal now is to prove that every u.s.l, with 0 of size ~1 satisfying the 

countable predecessor property (c.p.p.) is isomorphic to an initial segment of the 

Turing (tt and wtt) degrees. In outline we will follow the path laid down for the 

case of linear orderings in Section 1. This section gives a presentation of the 

countable case designed for our extension process. Except for not having fixed a 

greatest element in our approximations and so having trees for each element of 

the (u.s.) lattice rather than one master tree we essentially follow Lerman [10]. 

Other than rearranging some of the definitions the only difference comes in 

expanding conditions to add on new elements (density of the D~,~) and the 

related requirements on the representations of 5f. 

The major difference between the case of countable linear orderings (or 

distributive lattices) and arbitrary (countable) lattices or upper semi-lattices 

appears in the coding scheme used to guarantee that if i < j  then G~ ---<TGj. In 

Section 1 (and similarly for distributive lattices as in Lachlan [7]) the ordering of 

Lp C_ LP is represented by inclusion on a class of sets (the ranges of the functions 

fp,~.~ where l is the < -largest element of Lp). Of course one cannot represent a 

non-distributive lattice in this way. [Another view of this problem is presented in 

Lachlan [7]. The reductions of G~ to Gj for i < ] given in Section 1 are in fact 

m - 1 reductions. Thus if i < j then G~ -<_,, Gj and so the map i ~ degm (G,) gives 

an embedding into the m-degrees (actually to an initial segment of the 

m-degrees). There are, however, no such embeddings of non-distributive 

lattices.] Thus we must use some more complicated [at least tt] coding to reflect 

the ordering of ~ in the general case. 

We use Lerman's u.s.l, tables: 

DEFINITION 2.1. U.S.L. tables. Let 5g be a finite u.s.l, with 0 (and hence a 

lattice with 1). 

(a) O _C to z is an (u.s.l) table for ~ if[ 

(i) V~, fl E @ (a (0) --/3 (0)) ,  

(ii) Va,/3 ~ O Vx, y E ~ [x  < y & a(y)  = / 3 ( y ) ~  a(x) =/3(x)], 
(iii) Va,/3 E O  Vx, y, z E ~ [ x  v y = z & a ( x ) = / 3 ( x )  & 

. ( y )  =/3(y) --, a(z) =/3(z)], 
(iv) Vx, y ~ L,°[x/y---> 3c~,/3 E ®  ( a ( y ) = / 3 ( y )  & a (x ) ~ /3 (x ))]. 
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If 0 satisfies (i)-(iii) but not necessarily (iv) we call it a positive u.s.l, table for 

5£. 

(b) If 5g' C_ ~? and O is a table for 5C then O r ~ '  is the obvious table for Lg' (i.e. 

{a rLP']a EO}. If x E ~  we write @Ix for {a(x) Ia  GO}. 

(c) Without loss of generality we may assume that a (0) = 0 for every a E O. 

(d) If a, fl E O and x E LP we say that a is congruent to fl modulo x, a -x  fl, 

iff a ( x ) = / ~ ( x ) .  
Note that every finite u.s.1. ~ with 0 has a finite (u.s.l.) table (Lerman [10, 

Appendix B.2.2]). Our plan is to use trees with branchings given by a table O for 

5~ so that the listed requirements will guarantee that (i) GO--TO; (ii) X ~< 

y ~ Gx =<TGy ; (iii) X v y = z ~ G~ ~) Gy <=TGz ; and (iv) allow for the possibil- 

ity that x ~  y ~ Gx ~TGy. Before we can define the required trees, however, we 

must first handle infimum requirements and then allow for the need to extend 

the finite lattices in a condition within the table itself. 

DEFINITION 2.2. Sequential tables. 
(a) If O and • are tables for L£ then • extends 0 if OC_ ~ and • is an 

admissible extension of O, O C_a ~ ,  if in addition 

Va E xIt 3fl E O VT E O Vx ~ ~ [a -x  y--> ct =-xfl]. 

(Note that this relation is transitive.) 

(b) O = {O, I i < to} is a sequential (weakly homogeneous) table for ~ iff 

(i) Vi E to (O, is a finite table for L#). 

(ii) Vi E to (O; C_~ O,+1). 
(iii) V i E t o  V a , / ~ O ,  Vx, y, z E ~  [ x ^ y = z  & a ~ f l ~ 3 y o , ' y ~ , y 2 E  

O,+, (a-=,~,o-=~,,-xw=-~/3)]. 
(iv) Vi E to Vao, a~,flo,[33E O~ [Vx E S£(ao-,a~-* ~9o-~[33)-* 313~, [32E 

0,+~ 3f,,,f~,f2:0,----~®~+, (fo(ao)=flo & fo(a~)=13~ & f~(ao)=fl~ & f~(a~)= 

f , ( a ) - , f , ( f l )  & f2(a)=-,f~(fl)))]. 
Condition (iii) is designed t o  handle ^ requirements and (iv), the weak 

homogeneity property, plays a more technical role connected to initial segment 

requirements that need not concern us. We should point out, however, that (iv) 

is taken from Lerman [9, p. 268] rather than Lerman [10, p. 278] or Lachlan and 

Lebeuf [8, p. 289] since one actually needs three functions rather than two. 

DEFINITION 2.3. Extendible tables. 
(a) If O and • are tables for 3? then p = {p~ Ix ~ ~}  is an isomorphism of ® 

onto xI t, p : O--% ~ ,  if each p, is a recursive one-one function with recursive range 
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such that {p(a)  I a E 19} = • where by definition (p(a ) ) (x)  = px (a(x)) for every 

x E 27. If there is such a p we say that ® and • are isomorphic, t9 = gr, and write 

p[19] =,It. (Note that isomorphisms preserve congruence relations (i.e., 

a -xfl  ¢:> p(a)-xp(fl).)  
(b) A sequential table {0~} for 27 is extendible if it satifies the following 

conditions: 

(v) For any finite 27' _D 27 and any table "-F for 27' there is a j E to, a table ~*  

for 27' and a p : ~ P *  so that the following diagram is correct: 

• * - * ~ *  r27_co oj  

(vi) For every i < j E to, every finite 27' _D 27, every table ~ for 27' such that 

q~ r 27 c_, o ,  and every table ~* for 27' such that xp C_ a ~*,  there is a k > j and a 

p"  0*--% ~b + such that p ( a ) =  a for t~ E ~ ,  Vx E27'  Vn[n~XIt[x--*p~(n)>j] 
and such that the following diagram commutes: 

"~ -> ~r27 ~. 19, 
a~ a~ 

~* O~ 

4, 

(c) A sequential table 19 = {O, Ji E ~) is recursive if there is a recursive 

function giving canonical indices for the O~ (as 27 is finite we may choose any 

identification with a subset of oJ to formally define recursiveness on the 

appropriate space). 

(d) If 0 is a sequential table for 27 (i.e., 0 ( i ) = 0 , )  we write o r 2 7  ' =  

{19i i27 ' l iEto} and OIx={O, IxJ iEto}  for 2 7 ' c 2 7  and xE27 .  (Note that 

19rx is thus a mapoJ-~[oJ]<~.) 

(e) If 0 is a sequential table for 27 and • is one for 27' D 27 then ~ refines 0 if 

there is a recursive h such that ~ ,  r 27 ca oh(n. 

We can now define the types of trees that will make up our forcing conditions. 

The idea is that given a sequential table 0 for 27 the tree appropriate for an 

x E 27 is a 0 [ x-tree. The projections F between branches are then explicitly 

given by the tables. If the tree for x follows the path along t~ (x) then the tree for 

y < x follows the one along a (y) .  Of course Definition 2.1(ii) guarantees that 

this is well defined, i.e., knowing c~(x) is sufficient to determine a ( y )  - -  one 

needn't  know c~ (i.e., the path on the tree for l~e). 
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DEFINITION 2.4. The notion of forcing. Let 27 be a countable u.s.l, with least 

element 0. We define the notion of forcing ~ appropriate to 27 as follows. 

(a) A condition P consists of a finite sub u.s.l. Lp of 27 containing 0; a 

recursive extendible sequential table Oe = {Op.~ [ i E oJ} for Lp ; for each x E Lp 

a uniform recursive Op rx-tree and a commutative system of recursive maps 

Fp, x,y : [T~]-* [Ty] for each y < x in 27~ which are induced by Op in the sense that 

if Gx = Tx[g] then Fp, x,y[Gx] = Gy is Ty[h] where h ( n ) =  a ( y )  for any a E O ,  

such that a ( x ) =  g(n) (this is well defined by Definition 2.1(ii)). 

(b) A condition Q refines one P, Q =< P, if Lo D_ Lp, To,~ C Te.~ for x @ Lp, 

Fo,x,y = Fe, x,y I [ To.~ ] for y < x in Lp. 
(c) The restriction of P to L C Lp, P [ L, is the condition O such that Lo = L, 

Oo = Oe [ L, To, x = Te,~ and Fo, x,y = Fe,~,y for x, y E L. 

The typical method for specifying a refinement Q of P with Lp = Lo = L and 

Oe = Oo = O is to give an appropriate subtree of T = Te,~ (where we use 1 to 

denote the greatest element of ~p) and then take the "projections" as the 

subtrees of Te.. for x E 27. Recall that in general we may specify a subtree T* of 

the (uniform) Oi l - t r ee  T by giving a (uniform) Oi l - t r ee  S and setting 

T * =  ToS.  In order for the projections to be well defined and generate a 

refinement of P, S must satisfy an extra condition. 

DEFINITION 2.5. Subtrees and projections. Let O be a sequential table for 27 

and T be a uniform Or 1-tree. 
(a) If x < y, z in 27 and o- ~ b~o~, r ~ 6eor~ we say that ~ is congruent to z 

modx,  y,z, tr=-~,y,~-, if for each n < l t h c r ,  l t h r  and each a , / 3 ~ O ,  with 

a ( y )  = tr(n) and/3(z)  = r(n)  we have that a (x )  =/3(x),  i.e., a -x/3. If y and z 

are clear from the context we will frequently write this as tr-% ~'. 

(b) If x < y in 27 and ~r E 5eory then the y-projection of or on x, fy,~ (or), is that 

~- E 5coax with the same length as ~r such that cr -~  1" (i.e., cr -=~,~,x ~-), Again if y is 

clear from the context we often omit it and call r the projection o f g  on x, f~ (o'). 

(c) A uniform Oi l - t r ee ,  S, is distinguished if 

Vx E 27 vo., ~ e ~eo,, [~ =~ r ~ s ( ~ )  =~ s f f ) ] .  

(d) If O, L and T come from a condition P (i.e., 0 = Oe, L = Le and T - Tp,1) 

and S is a distinguished O i l - t r e e  we can define a condition Q - S(P)<= P by 

setting L o = L ,  0 o - - 0 ,  Fo,x,y=Fp,~,y[[To,~] and To,x=Tp, xoS,  where we 

define S~ by S~ (or)= fx (S(z)) for any z E 5¢otl such that fx ( r ) - - t r .  S~ is well 

defined since S is distinguished. Similarly, the maps Fo, x,y are induced by Oo = 0 

as required. 
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(e) With this notation we can describe the functions Fp.~,~ by noting that 

Fe,,.y (Tp,~ [g]) = Tp, r [/,.yg]. 

The simplest example of this type of refinement is given by taking T o S to be 

the extension subtree of T above some tr U 5eor~. 

DEFINITION 2.6. Extension trees. With notation as above we let Ext(T, tr) for 

tr ~ 5¢or~ be To S where S(7")= ~ * 7" which is clearly a distinguished uniform 

19 [ 1-tree. 

We can now begin to list the dense sets c¢ that guarantee that any ~-generic 

filter gives our required embedding. 

DEFINITION 2.7. Totality. ~o consists of the sets Do,, ={P  [lth(Tp,~(~b))_- > n 

for each x ~ Lp}. 

LEMMA 2.8. Each Do,, is dense. 

PROOF. Let P E @. Let Q =< P be defined as in Definition 2.5(a) by setting 

To,~ = Ext(Tp.~, tr) for any tr E 5eor~ such that lth f~ (o-) _-__ n for every x ~ Le. [] 

LEMMA 2,9. I f  19 is a recursive sequential table for ~ and £f' is a finite 
extension of  S~ then there is a recursive sequential table ~ for ~ '  which refines t9. 

PROOF. This is a special case of Theorem 4.1 whose statement and proof we 
defer. 

DEFINITION 2.10. Extendibility. ~ 

{P Ix ELp} for x ESC. 

LEMMA 2.11. Each D,,x is dense. 

[] 

contains c£0 and the sets Dl,x = 

PROOF. Consider P ~ ~ and x ~ ~ - Le. Let L be the (finite) sub u.s.1, of £g 

generated by Lp and x. By Lemma 2.9 we can choose • to be a recursive 

sequential table for L refining Op via the recursive function h. We will define a 

Q _-< P with Lo = L and 19o = ~P. The trees To.y for y E Lo - Le will just be the 

r y-identity trees. For x E Lp we define a apr x-tree To,~ C_ Tp, x : To,, (0)  = 
Tp, x(O ht°)) and if To, x(tr) is defined as T~,x (7-) with ltho" = n, l thz  = h(n)  and 

i ~ ~ ,  r x C_ Oh(n) I X then To,, (tr * i) = Tp, x (7" * ih t "+l ) -h (" ) ) .  It is easy to see from 

the definition of • refining O that the maps Fo,x,y for y < x in Lp induced by hu 

are precisely the restrictions of F~,,,y to [To, x]. Thus Q < P as required. [] 

Now note that if q3 is c¢l-generic we can naturally define functions Gx for each 

x E ~  as U{Tp, x ( O ) I P E C g  & x E L p } ,  i.e., ~gx(n)=Tp, x(O)(n)  for any 
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P E ~d n Do,, n DL~. The Gx are well defined by the compatibility requirement 

on generic filters and are total for each x E ~ by the density of the Do,, and D~,x. 

Now as in Section 1 if y < x then Gy =<rGx via any Fz~,y with P E ~, x, y E Lp. 

Moreover if x v y = z then G~ O Gy -= Gz. Of course G~ O Gy --<TGz by our 

first observation. To see that Gz =<rGx G Gy consider any P E cg with x, y, z E 

Lp so that Gx E [Te, x], Gy E [Tp, y] and Gz E [Tp, z]. Suppose that Gx = Tp,~[g~], 

G~ = T~.y[gy] and Gz = T~,z[gz]. Thus g~ =f~,~gz and g~ =f~,yg~ where the 

projections are defined by O~. Now by clause (iii) of Definition 2.1, f~,,g~ and 

f~.yg~ uniquely determine g~. As the trees are recursive we can therefore 

calculate Gz from G~ O Gy. Thus any ~-generic  cg determines a map L ¢ ~  

given by x ~ deg(Gx) which preserves = and v. We must now specify,additional 

collections of dense sets which will make this mapping one-one and its range an 

initial segment of ~. We define forcing as before. 

DEFINITION 2.12. Forcing. For any P E ~ and any sentence ~b(_G~ . . . . .  , _G~.) 

of arithmetic with function parameters _Gx,, x~ E Lp we say that P forces ~b, P IF (h, 

if for any G on Tp,~, qb(G~ . . . . . .  G~.) is true where G~, = Fe, l.~,[G]. 

DEFINITION 2.13. Diagonalization. ~2 contains c¢1 and for every e Eto, 

x,y E ~  the sets D2.,,~,y ={O [ x g  y---> O IF--n (~b~ = Gy)}. 

LEMMA 2.14. The D2,e,~,y are dense and indeed we can find a Q < P as 

required with Lo = Le and Oo = Op. 

PROOF. This is essentially the same as the proof of Lemma 1.14. Alterna- 

tively assume x, y E Lp and let T = Tp,~. Lemma VII.2.5 of Lerman [10] gives a 

T *  C_ T via a distinguished tree S (an extension tree) such that the condition Q 

determined by T* as in Definition 2.5(d) is as required. [] 

DEFINITION 2.15. Initial segments. ~3 contains c¢2 and for each e E to, x E L~ 

, ,  = ~ G the sets D3,x {Q [for some y < x, Q IF(4,7 • is not total or ~b, ~=r  y)}. 

LEMMA 2.16. The D3 . . . .  are dense. Indeed if e E to and x E Lp, we can find a 

Q < P in 93 .... with Lo = Lp and Oo = Op. 

PROOF. Let P E ~, e E to and x E Lp be given. Let T = Tp,1. Section 3 of 

chapter VII of Lerman [10] is entirely devoted to the proof that (with very slight 

notational changes) there is a T* C_ T (given by a distinguished tree S) such that 

the Q =< P with Lo = Lp, Oo = Op specified by setting T* = To.~ is as required. 
[] 

We now have enough dense sets to embed ~ as an initial segment of ~. 



Vol. 53, 1986 INITIAL SEGMENTS 27 

THEOREM 2.17. I f  Cg is ~3-generic then the mapping x ~ deg(G~) gives an u.s.l. 

isomorphism of 37 onto an initial segment of ~. 

PROOF. c¢~-genericity guarantees that the map is an u.s.1, homomorphism; 

~2-genericity that it is one-one; and c¢3-genericity that it is it is onto an initial 

segment. 

REMARK 1.18. As the T,,~ for P E ~, x E 37 are finitely branching with the 

branching given recursively we can recursively code the Gx as sets so as to make 

it possible to consider tt reducibilities as well. One can then easily define ~4 to 

contain the appropriate sets D4 .... and prove their density as in Section 1 to get 

the same result for tt and wtt-reducibilities. We omit the details and will 

continue to omit them in the next section. 

3. Size l~ upper semi-lattices 

We now wish to extend an embedding as in Section 2 to an u.s.1.37* of size N1 

with 0 and the countable predecessor property. Let us try to follow the 

procedure used for linear orderings in Section 1. Thus we first divide 37* up into 

a monotonic continuous sequence {37,} of downward closed sub u.s.l.'s so that 

37* = U ~<,, 37~. We then hope to define a class of dense sets c¢5 and a sequence 

of forcing notions ~ each contained in the one appropriate for 37, and a 

corresponding continuous sequence of generic filters ~ C_ ~ .  Again we want 

3~÷~ to contain conditions which are represented in cg~. 

DEFINITION 3.1. Isomorphisms. Let P E ~, a notion of forcing appropriate to 

some countable u.s.l. 37 with 0, and let ~b be a partial u.s.1, monomorphism which 

maps Lp onto some L _C 37 with ~b (0) = 0. ~b (P) is the condition O E ~ with 

Lo = L, To,x = Tv, , t , - ' ( . ) ,  Fo.x,y = Fe., '~x)., '<y) for x, y E L and Oo = th(Oe) 

where 4~(O~)(n)= 4,(O~(n))= {4~(a)[ a E Or(n)} and ~b(a)(x)= a(4~-~(x)) 
for x ~ L. 

There are now, however, a number of difficulties with defining ~+~ as simply 

those conditions P for which there is a P'  E c~ and a ~b with rg ~b = Le and 

q~ [37~ n Lp = id such that ~b(P') = P. The first problem arises in trying to prove 

the extendibility lemma, i.e., the density of the Dl.x. There just may not be any 

Le, C_ 370, say, which is isomorphic to some L C_ 371. Thus we could never hope to 

get a condition P E ~ ,  with L C_ L, .  The obvious solution is to require that the 

376 be elementary submodels of 37*. 

Unfortunately this refinement does not seem to suffice to prove the initial 

segment lemma - -  the density of the 0 3  . . . . .  To understand the difficulty suppose 
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we have a P E ~1 represented by P ' ~  go with ~b(P')= P. We are given an 

x E Le - ~0 and an e E to and wish to refine P to a Q which forces ~b~,, if total, 

to be of the same degree as Gy for some y < x, y E Lo. To do this we need a 

Q'-<_ P', Q'  ~ ~do and a ~bl with ~b~(Q') = Q such that O'  forces ~b~ * "'~, if total, 

to be of the same degree as  G 6 - , ( r  ) for some y < x, y E Lo. The trouble is that 

each possible candidate z for ~b~(x) (i.e., those at least bearing the same 

relationship to the elements of Lp f3 LPo that x does) could well have elements 

below it (in Leo) which are not below x. (It is easy enough to arrange such a 

situation.) Moreover it could also be that any condition Q'  E ~go which decides 

the degree of ~b ~,, for any such z, forces it to be that of some Gy with y I x. For 

such a situation there can be no Q'  ~ go with a ~b~ giving ~ba(Q') = Q E ~ as 

required. 

The solution is to represent conditions P E ~ only via maps ~b and conditions 

P ' E  ~ such that no extraneous elements in Leo are below ~b-l(x) for any 

x ~ L~, - Leo. As there may be no such representatives in Leo we must add them 

on. One cannot simply put in more and more elements of Le* since this would 

make Leo uncountable. Thus we will extend Le* via a saturation process that puts 

in isomorphic copies of all possible finite extensions L '  of any finite sub u.s. 

lattices L which add below the elements of L '  only elements generated by 

joining elements of L '  with ones below elements of L. These elements must exist 

and cannot ruin our representation if the ordering is defined in the natural way 

(freely). Of course if we expect an embedding of our extension of Le* as an initial 

segment of ~ to include one of Le* we must make sure that it is an end extension 

as well. 

We hope that this discussion in some way motivates the following definitions 

and lemmas. 

DEFINITION 3.2. Special extensions. Let Le be an u.s.l, and Leo, Le~ each a finite 

sub u.s.l, of Le. We say that Le~ is a special extension of Leo in 2g, ~o C_,p Lel(Le), if 

(i) LP~ is an end-extension of Leo in ~, ~oC~,~Le~(Le), i.e., Vx E Le~ Vy E 

Leo (x < y ~ x  ~Leo). 

(ii) Vx E dcLe (~0) Vv E ~ (x < v ~ 3 w E Leo (x ~ w < v)) where dcLe (L~o) = 

{y E Le ]3x E Le0(y =< x)} is the downward closure of ~go in Le. 
(iii) For every x in dcl~e (Lel), there is a largest x~ ~ Le~, denoted by IIl(x), with 

x~ < x and a largest Xo E dclz (Leo), denoted by I-lo(x) with Xo<~ x and moreover 

x = rio(x) v ri,(x). 
(iv) If x, y, z E dcl~e (Lel) and x v y = z then Ho(z) and IL(z) can be generated 

from the IIi(x) and Hi(y) by closing downward and under joins in Lel or in 
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dclz (L¢o). To be more precise we first define the closure process SL,ze for any 

u.s.l.'s L and L¢ (with possibly non-empty intersection) on subsets X of L U L¢ 

by SL,~e(X)= U , S ~ e ( X )  where S°~e(X)= X and 

n+l n SL,~e(X)={t E L U 5~13r, s E SL,~e(X)[r,s,t E L & t <=L r v s] 

or 3r, s ~ S"L,z(X)[r, s, t E 5f & t <~er v s]}. 

If we now set S(X)= S~e,,dc~eo)(X) we can state this requirement as 

no(z), rI,(z) s ({rio(x), II,(x), IIo(y), II,(y)}). 

(Note that if L is finite (as it is here with L = L1) then SL,.~(X)= S~,~e(X) for 

some n since the sequence can continue to increase only by adding on new 
elements of L.) 

Before constructing the "specially saturated" extension of our given L¢, we 

prove some simple facts about special extensions that we will need later. 

LEMMA 3.3. Transitivity of C~p. If ,:~,0Csp~(~l(~) and ~1 C~pLY2(Sf) then 

PROOF. (i) That ~o ~end =~L°2 is clear as is (ii) by applying it for both given 
extensions. 

(iii) Let II], II~ be the projection functions for LPo _C ~ and ~1 ~ ~ 2  respec- 

tively. To get the required functions for LPo C_ ~2 we simply set IIo(x) = IIoIIo(x~ 2 ) 

and H~(x) = II~(x). That IL(x) is as required is clear. For IIo consider any y < x, 

y E d c l ~ o ,  x E d c l L ~ ,  y < I I g ( x )  and so y<IIo~IIg(x). Of course x =  

IIo(x) v IL(x) since x = II~(x) v II~(x) = II~l-lg(x) v II~IIg(x) v l-I~(x) and 
II~H~(x) < Hl~(X) = IL(x) and H~II~(x) = Ho(x). 

(iv) Given any x v y = z in dclL¢~ argue by induction that for every t 
generated by S: for L¢~ C_,p ~ from X~ = {II~(x), II~(y)} one gets t, if t ~ ~z, and 

II~(t), if t ~ dcl L~l, in the generation process S associated with ~o _C ~2 from 

{IL(x), H~ (y)} = X. As II~(z) E S:(x~) this suffices to show that 1-I~ (z) E S(X). 
Begin with S~,o(X:) = {II~(x), II~(y)}. Of course it suffices to consider the II~(x): 

ri (x) = ri,(x)  So(X); 

n n (x) = no(X) So(X); 

and HIH~(x)< H~(x) and is in Lel __C_ 5F2 and so in S1(X). Suppose we have 

r,s GS2.,(X2). If r,s EL~2, t GLP2 and t ~< r v s, then of course t E S(X) as 

r, s E S ( X )  by induction. If r, s EdclLPl then II~(r),W~(s) are in S(X) by 

induction. As the generation process S~ for ~o_C~1 is contained in S, 
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II~(r v s ) E  S(X) .  Thus if t < r v s then H~(t) < Hl(r v s) and so IIl(t) ~ S(X)  as 

well. [] 

LEMMA 3.4. Closure. I f  5£o C_sp 2£1(2£) and ~£1C 2£2 C 5£ with 5£z finite then 

there is a finite 2£3 C Le such that 2£2 C_ 2£3 and 2£0 C_sp 2£1(&g3). 

PROOF. Let Ill be the given projection functions in 2£. Let 2£3 be the (u.s.l.) 

closure of 2£2 t3 Iio[2£2], i.e., those elements which are the join of one, x', in 2£2 

and one, x", in Ho[dcl:e2~l] = Ho[2£2] C dcl~e(S¢o). Properties (i) and (ii) of the 

definition of 2£0 C_sp 2£1(2£3) hold for any 2£3 _~ 2£1 with 2£3 C_ 2£ by 2£0 _Csp 2£1(2£). 

As 2£3 is finite one can define for x E dcLe3 Lg~ 

Hk(x)=max{y ~ x  ly ~dcl~,2£o} and II ' l(x)=max{y ~<x ly ~2£,}-- rL(x) .  

We must show for (iii) that x = Ilk(x) v [I'l(x). Say that x E dcl~ LP~ and as above 

x = x ' v x " .  Of course x"EIIo[2£2]C_dcl~2£o and so x"--.<IIk(x), x'Edcl~ezLgl 

and so x ' =  IIo(x')v IL(x') with IIo(x')E 2£3. Thus IIo(x')= < Ilk(x). As II,(x') < 

II~(x) as well we see that x = x' v x" = [Ik(x) v lI~(x) as required. 

Finally we must verify (iv). Let S' be the generation process for ~o _C 2£~ (2£3) 

and S that for L¢o C 2£1 (Sf). Suppose x v y = z in 2£3. Let X '  = {II'~(x),II;(y)}, 

X = {1-I, (x),I], (y)}. We need to show that I-l'~(z)E S'({l-l~(x), I-I;(y)}). We claim 

that S(X)(3  Le3 C_ S'(X').  As Ill ( z ) E  S ( X ) w h i c h  is downward closed in dcl~e2£o 

and in 2£1 and II '~(z)~H~(z), this will clearly suffice. The first point is that 

S ( X )  = S(X")  where 

x"  = {n, (x '), rt, (x 3, rI, (y'), 11, (y 3} 

and x', x", y', y" are chosen as in the definition of x and y being members of 2£3. 

As II, (x'), Ill (x")~< II, (x) and similarly for y, it is clear that X"C_ S ( X )  and so 

that S ( X " ) C  S(X) .  That I / , (x)  and I I , ( y ) E  S(X") follows from the facts that 

x = x' v x" and y = y' v y" via (iv) of 2£o C~p 2£~(2£). We now prove by induction 

that if t E S(X")  ('1 dcl.,e2£o then 3t '  E S'(x') (3 dcLe~ 2£o(t < t') and that if t E 

S(X")  (3 2£i then t E S '(X')  (3 2£1. As S'(X')  is downward closed in dclz~ LPo this 

will prove the claim. For n = 0  note first that IL(x'), IL(x")~<II~(x) = 

II'l(x) E S'(X')  and so IL(x ' ) , IL (x" )E  S '(X')  and similarly for y. Next l-lo(x') <~ 

IIk(x) and IIo(X")~<x"Edcl~e~2£o and so x"~<II~(x) as well. Thus 

IIb(x), Ilk(x")E S'(x') and similarly for y. 

Suppose now that r, s ~ S, (X") A 2£1 and t ~< r v s, t E 2£1. Then by induction 

r, s E S ' (X')  and so t E S'(X') .  Finally, if r, s E S, (X") (3 dclz~£o then by induc- 

tion there are r', s' E S '(X')  fq dcl~e~ ~o with r =< r' and s < s'. If t =< r v s (and so 

t E S,+t(X")) then t <= r' v s' E S ' (X')  (3 dcl~e~ 2£0 as required. [] 
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LEMMA 3.5. If  ~ is a size N1 u.s.l, with 0 and the c.p.p, then it has an end 

extension 5~* (of size N~ with 0 and the c.p.p.) which can be given as the union of a 

continuous monotonic sequence of downward closed sub u.s.l.'s 5f~ which are 
saturated, i.e., for every finite sub u.s.l. Lo of 2¢~+1 and every isomorphism type of a 

finite u.s.l, end extension of Lo there is an L~C~+I  with L ~ - L o C ~ + I - S f ~  

which realizes this type over Lo such that LoC~pLI(Sf~+I). (For notational 
convenience we let LP-1 = (~ and allow a to be - 1  as well.) 

PROOF. We really only need to be able to construct extensions for one Lo and 

isomorphism type at a time for we can then dovetail to get the desired result. 

Thus we first need a one step extension. 

SUBLEMMA 3.6. If Lo is a finite sub u.s.I, of an 5~ as above and a finite 

isomorphism type over Lo is given, then there is an end extension ~ '  of ~ (of size 

~ with 0 and the c.p.p.) with an L~ C_ S '  realizing the given type over Lo such that 

Lo C_~p L,(~'). 

PROOF. We begin with any L~ realizing the given type over Lo with elements 

of L 1 - L 0  denoted by symbols not used in ~. We use S = SL,,:e to define the 

elements of 37', 

37' = {S(X) [ X a finite non-empty subset of L~ U 5f}. 

The u.s.1, structure on ~ '  is given by 

and 

s(x)<-_- s (Y)  s(x)c_ s (Y)  

s ( x )  v s ( v )  = s ( x  u Y). 

One must now check that this defines an u.s.1, structure. Of course S({O}) = {0} is 

the 0 of ~ '  and ~< defines a partial order. It is clear that S(X),S(Y)C_ 

S (X  U Y). Finally, if S(X), S (Y )  C_ S(Z)  then X, Y C_ S(Z)  and so S(X  t_J Y) C 

S(Z)  as required. 

To formally guarantee that ~ C ~ '  we identify S({x}) with x for x E ~. Again 

we must check that this is an u.s.1, isomorphism. The point here is that for 

X C_ ~, S (X )=  dcl~(v X)  by definition of S and the fact that LoC_e°d L1. Thus 

x < y  ~S({x})C_S({y});  x ~ y  ~ S ( { x } ) ~ S ( { y } ) ;  and x v y = z ~ S ( { x } ) v  

S({y}) = S({x, y}) is in fact S({z}). 

We must now verify that ~ '  has all the required properties. 

(i) L¢ C o.d L¢': If S(X)  C S({y}), y E ~ then X C_ S(X)  C_ dcl~{y}. Thus X C 

and S(X)  = S({ v X}). 
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(ii) 37' has the c.p.p.: The point here is that for every X, S(X) is countable. 

(X = So(X) is finite and if S,(X) is countable then S,+I(X) only adds on 

elements of L1 (which is finite) or ones of ~ below the join of two such in S, (X). 
As ~ has the c.p.p, this set is also countable . )As  S(Y) < S ( X ) ~  Y C_ S(X) 
and Y is finite there can then be only countably many such elements. 

(iii) L* = {S{x}]x E LI}C_ ~ '  realizes the same type over Lo as does LI: 

(a) If x < y in L1 then x E S~({y}) and so S({x})_C S({y}). 

(b) If x v y = z in L~ then x, y E Sl({z}) and so S({x}) v S({y}) = S({x, y})_-< 

S({z}). On the other hand z E S({x, y}) and so S ({z} ) -  < S({x})v S({y}). 

(c) If x ~  y are in L~ we must show that S({x})~Z S({y}). We claim that 

S({y}) = T = dclq({y}) U {x E ~ [ ( 3 z  E Lo) (z < y in L1 and x < z in ~)}. Now 

y E T C_ S2{y} and so we need only show by induction that S, ({y}) _C T for n > 0. 

The point here is first that if r, s E ~ N T and t < r v s then t E T and second 

that if r, s E L ~ N T  and t<<.rvs is in L~ then t E T .  Thus if x ~ y  is in L~, 

S({y}). 
We can now identify L* with L~. 

(iv) L0 C_,p L~(37'): We verify the four clauses in Definition 3.2. 

(a) Lo_C¢.o L l (~ ' )  since ~ C_~.o LP'. 

(b) Suppose S(X)Edclz,(Lo)=dcLe(Lo). Then S ( X ) =  S({x}) with 

x E dcLeLo. If S({x})_C S({y}) with y E L~ then x G dclq{y} or (3z E Lo)(Z <q y 
& x < z z ) .  The second possibility is exactly the one required. If, however, 
x Edclq{y}, then x E L~ (and x <~ y). As x ~< u for some u E Lo as well and 

Lo C_ ~ Co.d ~'~ and L~ O ~ = Lo, x E Lo and it already is the required element. 

(c) Suppose S(X)~dcl~e,(L~) so S(X)C_ S({y}) for some y ~ L~. As L~ is 

finite there is clearly a largest x~ E L~ below S(X). Set III(S(X)) = x~ = S({x~}). 

We have established above that 

S({y}) --- dClLl({y}) U {x E ~ ] ( 3 z  E Lo)(Z <~ y & x <.~z)}. 

Now argue by induction that for n => 1, S, (X) is the union of some subset of L~ 

and a finite number of downward cones in dclz(Lo) (i.e., sets of the form 

{ulu <~ v} for v ~dcl~e(Lo)). For n = 1  this follows from XC_ S({y}) and so 

X C L~ U dcLe (Lo). The rest is immediate from the definition of S,+~(X) in terms 

of S. (X). As we know that there is an n such that S.+~(X) = S. (X), S. (X ) -  L~ 
must consist of a single such cone, say {u E ~ [ u ~ Xo} for some xo E delve (Lo). 

S{xo} = xo is then clearly the largest element of dcLe(Lo) below S(X). As 

dclz,(Lo)= dc l z (Lo)we  can set I Io(S(X))= S({xo}). Finally S(X)C_ S({xo, x~}) 
since 

S(X)  = {y E L I I Y  ~ x~}U{y E L P I y  ~Xo}. 
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Thus S(X) = Ho(S(X)) v H1(S(X)). 

(d) Suppose S(X),  S(Y) and S(Z)EdcLe,(L1) and S(X)vS(Y)= 
S(XU Y)=S(Z).  Now S(X)=S({xo, xl}), S(Y)=S({yo, yl}) and so 

S({xo, x,, yo, yl}) = S(Z) but Zo, z, E S(Z) and so Zo, zl E S({xo, xl, yo, yl}) which 

is contained in SL,.ac,~.(Lo)({S{xo}, S{xl}, S{yo}, S({x, y})) since S({xo, xl, yo, yl})C_ 

L1U dcl~e (Lo) = El U dcl~e,(Lo). [5]" 

We return now to the proof of the lemma. Consider any finite Lo C_ 37 and an 

isomorphism type of L~ over Lo. Form 37' as in the sublemma and let 370,0 be the 

least downward closed sub u.s.l, of 37' containing L1 which is closed under rio and 

II~. 370,o clearly exists and is countable. Moreover  by the closure under rio and II1 

it is easy to see that Lo C~p L~(37o,o). We can now choose another finite sublattice 

of 370,0 and another isomorphism type to generate an end extension 372 of 37' as 

in the sublemma and so a countable end extension 37o,1 of 370,0 in which the 

required extension exists and is special. As 370,0 _C~,~ 37o,1 extensions that are 

special in 370,0 (e.g. LoC_~pL~(37o,o)) remain so in 370,~. [The point is that the 

definition of specialness depends only on dCl~o,o(Ll) which is the same as 

dcl~eo,,(L~).] By dovetailing over all finite sub u.s.l.'s and all possible types of finite 

extensions we can eventually get 37(~), an end extension of 37 with 37o= 

37o~ C_o,~ 37~) so that 370 satisfies the requirements of the lemma. By continuing 

to dovetail (always using new elements) so as to include all elements of the 37(~) 

as well we can get our desired 37* as 37~,0,) along with the division into countable 

37~ as required by the lemma. [] 

By this lemma it suffices to consider only those u.s.l.'s 37* such that there is a 

continuous monotonic sequence 37~ of downward closed saturated countable sub 

u.s.l.'s with U 37. = 37*. We fix such a system and will define our notions of 

forcing N.+I to be the conditions in the notion of forcing appropriate to 37a+1 
which are represented by conditions in cg. via special extensions. To be precise 

suppose we have a definition for a class ~5 of dense sets in the notion of forcing 

appropriate to any countable u.s.l, analogous to that of Section 1. 

DEFINITION 3.7. The sequence o[forcing notions. Given 37* = U 37~ as above 

we define ~ ,  and ego by simultaneous induction. ~o is the notion of forcing 

appropriate for 370 and (~o is any c~5-generic filter on ~o. Suppose ~ is defined 

and (~ is a c¢5-generic filter on ~ (we will later verify that one exists). ~+1 is 

the collection of all conditions P in the notion of forcing for 37~+1 such that there 

is a P ' E ~ o  and a & such that dom~b C_Lp,, ~b(P ' )=P,  ~b I (Len37~)= id ,  

Lp O 37~ _C~p ~b-l(Lp)(37~) and Lp n 37~ _c ~b-l[Le] satisfies the rank condition 
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where we say that Lo C_ L1 satisfies the rank condition if Vx ~ (L1 - Lo) Vy ~ L~ 

(rk y _-< rk x). Of course for z E 2?% rk z = /z~  (z E 2?8 - U ~<~ 27~). ~+1 is then 

any c~5-generic filter on ~ + i .  For limit ordinals A we just set ~ = U ~<~ ~ and 

~,,. = Uo<, ,  ~,~. 

The crucial step now is to define the class of dense sets ~5 needed to make 

~5-genericity of ~d~ imply the existence of a c~s-generic cg~+, _C ~+1. Again the 

density of the Do,, (totality), D2,~,y (diagonalization) (and D4 .... if employed) in 

~+~ follow immediately from the corresponding genericity requirements on ~ .  

The density here of the D3 .... (initial segments) will also follow from the 

corresponding requirements on ~3~ because of the specialness of our representa- 

tions. Thus the only real problem is to guarantee the extendibility lemma. 

Suppose we are given a P E ~+~ represented by P'  E cg~ with ~b(P') = P and 

some x E Lp. To add in x we must refine P to a condition O with Lo containing 

the u.s.1. L generated (in 2?~+,) by Lp U {x}. To get such a O we need an 

appropriate O ' E  ~ with representatives for the type of this u.s.1, of the 

required form and a corresponding mapping ~O such that qJ(Q')_-< 4~(P'). 

DEFINITION 3.8. Amalgamation. Let ~ be the notion of forcing appropriate 

to a countable u.s.1.2?, c~ contains c~4 and for each finite isomorphism type I of 

u.s.l.'s and maps as in the commutative diagram (3.80)) 

Lo ~ ~ end L t  

_Lo ~ "end L I  

Fig. 3.8(i). 

and every condition R E ~ with a realization g : L~ ~ L~ C_ LR of _L~ such that 

g[.Lo] = Lo C_~p L, = g[_L,] (2?) and every realization f : L ~  L6 C_ 2? such that 

f I _Lo = g I Lo the sets D;,~,n,g,t = {Q I O is incompatible with R or there is an 

h : L_~ ~ Lo realizing this type with h [ _L~ = f [ _L~ such that h [_L~] C_~ h [_L ~] and 

~b(O) <- R [ L, where rg 4~ = hj[L_~], dom 4~ = L1 and ~b is given by hjg-l(x)~ x 
for x ~ L~}. The situation is pictured in Fig. 3.8(ii). 

c~ also includes for every LoC_~pL~(2?) the sets Ds,Lo,q = {Q ILoC_~pL~(Lo)}. 

The basic lemma, whose proof we postpone to Section 4 so as not to interfere 

overly much with the flow of the overall argument, is then the following: 

LEMMA 3.9. If ~ is appropriate to 2? and 2? is saturated then the sets D~5,l,R,g,f 
and Dsxox, are dense in ~. 
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L o 

Y 
Lo c > L~ sp _ _ > L ~  

end 

L' , h , _o ~ - ~  _L; ---..> L~ 
e~d 

Fig. 3.8(ii). 

Now let Le* = U . . . .  ~ be as in Lemma 3.5 and ~ ,  ~ as in Definition 3.7. 

To reflect the rank condition on representations for conditions in ~ + t  we 

modify the r¢~ slightly in this setting to get ~ by requiring in the definition of the 

D~,,,R.~,~ that g[_Lo] C_ g[Ll] and h[_LA]_C h[_L[] satisfy the rank condition. Of 
course for ~o the two notions coincide and so Lemma 3.9 gives us the 
~-generici ty  of ~do. 

LEMMA 3.10. If ~ is ~5.generic for ~ then there is a ~+~ which is ~s-generic 
for ~+t. 

PROOF. We must show that each of the required sets is dense in ~t+lo 
Consider any P E ~+~. Let P '  E ~d. and th be as in the definition of ~+1. 

(a) Do,.. Let Q' <= P' be given by qCo-genericity of ~ ,  i.e., Q '  E Do,.. Clearly 
Q = ~b(Q') =< ~b(P') = P and so Q E Do,. n ~a+l. [] 

(b) Dl,x. Let _Lo be the type of Lp n ~ = Lo and _L1-3 _L0 that of Lp _3 Lp O ~ 
with realization k : _L~ ~ Le. Then we have a realization g : _L~ ~ ~b-~[Lp] = LI C 

Lp, with g = ~- lk  so that g p _Lo = k (as ~b f Lo = i'd). By the definition of ~÷1,  

g[_Lo] = Lo _C~p L~ = g[_L~] (Lf.) and the rank condition is satisfied. Now apply the 

~5-genericity of ~d~ to get a Q'  =< P'  with Q' E ~ O Ds,~,P,,g,r where ! is given by 
specifying _L~ and _L( as the types of L O LP~ and L where L is the u.s.l. 

generated (in ~+1)  by Lp U {x}, j as just inclusion and f : _L~---> L O ~ = L~ as 

the restriction of the natural realization k :L  I---> L (which of course extends 
k I_L1 and sends _x to x) to _L~. 

Now let ~b = kh -1 S O  that ~b-~[L OLP~]= hk-~(L O ~ ) =  h[_L~]C_~ph[_L'~] = 

hk-l[L] = ~b-~[L]. As h[_L~] C_ h[_LI] also satisfies the rank condition, ~b(Q') = 

Q E ~+~ and Lo = L which of course contains x. By the definition of Ps,tP,,g,i 

c~'(Q') <= P'p L~ where dom ~b' = hi[L_1] and ~b': hi(x_) ~ 6-~(x). Now 6(h(_x)) = 

kh+l(h(x_)) = k(_x) = x and so ~b = ~b~b' on h[_L,]. Thus Q = 6(O')_< ~&(O')<= 
(P')  = p. [ ]  
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(c) D2,~,~,y for x ~  y. We may assume by (b) that x,y EL~,. Choose Q'<=P' 
with Q'E~fqD2.,.,-,~x).,-,~y). Q = ~ b ( Q ' ) E ~ + ~  and as O' l t -m(4,~ *-'C''= 
G, l(j¢)), O = 4(Q' ) It- --''I (4~ }* = Ox). [] 

(d) D3 ..... Again we may assume that x EL~,. Choose O'<=P ' with 

Q' E ~, f"} D3.~.¢,-~o,). Thus for some y < $-~(x), y E Lo, 

Q'lt- (4' 7"-"" is not total or 6 ~,-l~, =_ r G~). 

As y < $-1(x) and Le f~ ~ C,p $-X(Le)(~, )  there are yo E dcl.% (Lp fq Lea), say 

yo< z ~ L e ~  Le~, and y~ ~ ,#-I(L~) such that y = y0 v yl. Now we may assume 
by extendibility at level a that yo ~ Lo, and so 

Q'  It- ( ~ * - ' " '  is not total or 

~b °* ' " ' -  F ~G ~:"m Gy,). e = T  O',Z,yo[ z J t ~ 7  

Thus, as q~ (z) = z, 

$(O')tt- ($  °x is not total or 

4~"-= r Fo.. , . ,o(G) G G,,y,,). 

Of course 4 , (Q ' )E  ~+1 and $(Q')<=P. By (b) we may choose O--< 4,(O'), 

O ~ ~÷1  with yo E Lo. As Fo,.z,yo = Fo.,.yo, 

O It- (~b~" is not total or 

4 ,  o _ G,o O G,,,,)). 

There is, of course, a v E Lo with v = y0 v ~b(yl) and Q It- GyoG G,~y,)=-TGo and 

so Q It- (q~ °" is not total or ~b~'-r Gv). Now by (c) we may even omit the second 

alternative unless v ~< x as required. [] 

(e) DS,Lo:,L. By Lemma 3.4 there is a finite L such that Lp C_ L C_ Le~÷~ and 
Lo C~p L~(L). Now argue exactly as in (b). [] 

(f) Ds,~,R.g,t. we need only consider the case that P refines R. By (b) we may 

assume that L~ =/[_L~] C_ Lp. By (e) we may also assume that LoC_,pG(Lp). 
Consider now the type of an extension L of Lj, containing an L I with 

L I - L ~ C _ L - G ,  realizing the type specified in I over L~ such that no 

extraneous ordering relations are introduced, i.e., 

(*) Vx ~ L p [ 3 y  ELI(x  < y)--* x EL~] 

and 

(**) Vx e L[~ty eLI(x  <. y)--, x ~LI].  
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By the saturation of LP.+~ we may choose an L C_ Lf.+~ with L - Lp _C ~ a + l  -- ~ x  

realizing this type over Lp. 
A picture of the lattices is given in Fig. 3.10(i) and the associated commutat ive 

diagram in Fig. 3.10(ii). 

Fig. 3.10(i). 

L o  

Lo r w L1 - - ~  L1 ~ L p  c.._> Lj, c..~, L 
- end - s p  

_L; .- ~ _LI---~L~ 
enJ 

Fig. 3.I0(ii). 

We need a Q'<P' which will represent a Q E~a+I satisfying all the 
requirements of Ds.t,R,g.f. We choose a 
_L1 = _L,; 

: 4,-1[Lol 

: _L1 ~ 4, -l[Lx] 

Q ' E  q3. tq Ds.i,~.,,g,¢ where Go = _Lo; 

via 4,-~g; 

via 4 , - lg  ; 

_i~ is the type of Le; L_I is the type of L ;  we extend g in the natural way 
extending fr_L~ to a realization g:L_~---~L and so g:i_~---~Le; we set 

f :  ~ - +  4,-l[Le] to be 4,-1g; and f :  ~1 ~ / 7 I i s  just j as _/~1 = _LI and jILl]  C L~C 
/S[. The diagrams for this set up are given in Figs. 3.10(iii), (iv). 
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Lo" 1 
Lr Lp. 

i 

4, 
4,-'[L~] 

Fig. 3.10(iii). 

6-'[Lo] 

S "-- 
Lo = L,, ~ /~, = L, ) i&- ' lL , ]  
- - e n  - - ~ = 4  l g  

t7 
_ 1 

Fig. 3.10(iv). 

We must first verify that ~ has the properties required to apply Ds,i,p,,~.f. As for 

the rank condition on ~[~o] C g [~] ,  i.e., for $-~[Lo] _C &-~[L~], consider any 
x E &-l[L,] - $-1[Lo] = $-~[L, - L0] and any y E &-'[G]. If rk x < rk y then by 

the rank condition on &-~[Lp O LG] _c ~b-l[Le] we know that 
x~&-~[G,] -& t[G, NLG]. Thus xE$- ' [LpOLP~]  and so $ ( x ) = x  and 
x E L1-  Lo. By the rank condition on L0C L, assumed in Ds,~,R,,t, rk $(y)_-< 
rkx =<a and so $ (y )ELG and &(y)= y. Thus rky =<rkx for the required 
contradiction. 
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We next verify that 6-'[Lo] =/~[~ol C_~p~l~] = 6 ZIL,] (~) .  

(i) As LoC~pLI, 6-I[Lo]Ce.a6-'[L,]. 
(ii) Consider any x C dcl~b-l[Lo] and v E ~b ~[Lt] with x ~ v. If v ~ Ll n 5g~ 

and x ~ z ff ~b ~[Lo] then by L~ N ~ C~p~b l[Le] there is a t ~ Le N ~ such 

that x ~ t < z .  Thus x~t=qb(t)<qb(z)~Lo. By LoC_,pL~ we then have 

cb(w)~Lo with x<rb(w)<.(o(v)=v. Of course w=q~(w)  as 6 ( w ) <  

v ~ Le n L~. Thus x < w < v and w ~ ~b l[Lo] as required. Now suppose that 

v ~ L , -5°~ .  As Le n 2¢~ C_~p4~ '[Le](L~), x = XoV x~ with xo~dcl,q(Le n 5~) 
and x ~ b  I[Le]. As Xo<V there is a u ~ L p n L ~  with X o < U < V  (by 

Le n 27. c~p ~b ' [Lv ] (~ ) ) .  Thus u = ~b(u)< ~b(v)~ L~ and u = ~b(u)= Uo v u~ 

where Uo G dcl~pLo and u~ G L~ (by Lo C~p LI(Le)). As q~(Uo) = Uo < 4~(v) and 

uoEdcl~,Lo there is a qb(t)~Lo with Uo<~q)(t)<q)(v). Thus we have a 

t G ~b-~[L,,] with uo< t < v. As u, < u < v, ~b(u~) = u, ~< ~b(u) = u ~< 4~(v). Thus 

by the rank condition for LoG L~, 4~(ul) ~ Lo, i.e., u~ ~ 4,-1[Lo]. Thus Xo< u < 

t v u~ < v and t v u, ~ qS-'[Lo]. 

Next consider x~ch-~[Le], cb(x~)<~q)(v) and q~(x~)~dcl~Lo (as 

x~ < x G dcl 4~-~[Lo]). By Lo C_~p L~(Le) we have a q~(s) G Lo with ~b(xl) < ~b(s) < 

~b(v). Now, of course, x ~ < s < v ,  sE~b '[Lo] and we have X=XoVXl< 

t v u l v s < v  with t v u ~ v s ~ b  ~[Lo]. 

(iii) Consider any x ~ dcl~¢ ~b '[L~], say x < v E ~b '[L~]. By the choice of ~b, 

x = Xo v x~ where 

Xo = max{y < x [ y ~ dclzo 6-~[Le N ~ ] }  

and 

x, = max{y ~< x [y ~ 6 '[Le]}. 

By clause (ii) of the definition of the specialness of the extension there is a 

w E L p n ~ o  with x,<w<~v. Now c~(w)=w<~c~(v)CL~ and so by 

LoCspLl(Le), W=WoVWl with woEdclLpLo and wIELT. As Wo, WlE~q~, 

~b(wo)= Wo, ~,(wl) = w~ and so Wo, W~ Edcl~o~b '[Lo]. Thus Xo< WoV w~ is in 

dcl~¢~b ~[Lo]. Now as x~ < x < v, ~b(xj)< ~b(v)C L~. So we next consider 

~b(Xl)E Le n dclLpL~. Thus ~b(xl) = Uo v u~ where Uo ~ dclLp (Lo) and u~ E L~. 

We then see that x~ = ~b-'(Uo) v 4, '(u~) with ~b-~(Uo) E dcl ~b-~[Lo] and ~b ~(Ul) E 

~b '[L,]. We can thus try to define IIo(X) = xo v ~b-'(Uo) and Ill(x) = ~b-'(u0 as 

x = IIo(X) v II,(x). 

As x~ is the largest element of ~b ~[Le] below x and ~b-t(ul) is the largest 

element of ~b ~[L~] below x~ it is clear that ~b-~(u,) is the largest element of 

6 - ' [ L , ]  below x. We must show that IIo(x)= max{y < x l Y ~ d c b o ~ - ' [ L 0 ] } .  
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Consider any relevant y. y = yo v yl with yo E dcl~e~ (Le O 37~), yl E 4~-'[Le]. By 
definition of Xo, yo<Xo. Similarly y l<x~  and so 4)(yl)<$(Xl) .  As 

4)(yl) E dclL~Lo, 4)(yl)< Uo. Thus y = yo v yl < Xo v ~b ~(u0)= FIo(x). 

(iv) Let Fl~, $1 and 1-I~, $2 (for i =  0,1) be the projection functions and 
generating processes given by LoC_,pL~(Lp) and Lp n 37~ C_sp4)-l(Le)(3?~) re- 

spectively. Thus 1-I 3 = 4) lril ~ and $3 give (by the isomorphism) functions which 

witness 4,-~[Lo]_C,p4)-~[L~](4)l[Le]). We can now write the functions 11, 

witnessing 4)-~[L0] C_sp 4)-l[L~](3?~) as rio(x) = ri~(x) v II3rI~(x) and IL(x) = 
3 2 II~[Ii(x). Consider any x v y = z in dcl~eo ~b-~[L~]. We know that if we apply $2 to 

X2 = {II~(x), ri](x), [I~(y), II~(y)} we eventually get rI~(z) and 1-l~(z). We claim by 

induction that applying $2 to X={Ho(X),ri~(x),Ho(y),II~(y)} we get every 

element of dcl~e Lp N 3?° generated in $2(X2) and for every element t E ~b-'[Le] 

in $2(x2) we get I/3(0 and H~(t). This, of course, implies that we get rl~(z), 

ri3(II~(z)) and H~(H~(z)) in S(x) and so IIo(z) and IL(z) as required. The claim 

holds at level 0 by the definition of the IL. Suppose r,s ~S2.,(X2)O 
dcl~eo (Lp N 3?). By induction r, s E S(x). The argument given in (ii) above for Xo 

shows that r, s E dcl~eo 4)-~[Lo] and so also for any t ~< r v s. Thus any t put into 

$2,,+~ by the first clause of the definition is also put into S(X). Finally suppose 

r, sES2. ,(X)A4)-I[Le] and t<~rvs, tEq~ ~[L~]. By induction rib(r) and 
II3(s) ~ S(X). As the II 3 witness ~b-~[Lo] C_~p ~b-~[L~](4)-~[Le]) and the genera- 

tion process $3 is clearly contained inside that of S (for elements in dcl 4) ~[L,] as 
all of these are), rI~(r v s) ~ S(X). As rI~(t) ~< H~(r v s) while S(X)  O 4~-~[L~] 

and S(X)  ndcl,-,l~14)-~[Lo] are downward closed (in ~b-~[L~] and 

dcl,-~t~ ~b-~[Lo] respectively), H~(t)~ S(x) as required. 
We can thus get our desired O'  ~ ~, N Ds,~,e, ~,~. We next define ~b : Lo,---~ L by 

~b = g/~-~ [/~[~'1] and let O = ~ ( 0 ' )  so that Lo = L. To see that O E ~,+~ we 

must verify that ~ ~[Lo n 37~] = Lo O 37~ C_sp ~-'[Lo]. Now Lo N 37~ = Le N 37~ 
by our choice of L. Consider any x ~ L e  O 37, : $-~(x)= f~g-~(x), g-~(x)~L_~ 
and /~ I"/~ = f = 4)-'g. Thus $-~(x) = f~g-~(x) = 4)-~gg-~(x) = 4)-~(x) = x. Next 

note that ~b ~[Lo N 37,] = Le N 37~ C_~ ¢,-'IL~] =/i[_£~] _G~/i[£11 = f~g-'[L] = 
~b-'[Lo]. Thus by the transitivity of C_~ v (Lemma 3.3), $-~[Lo N 37~] C~ $-~[Lo]. 

This argument shows that for x U Le, $-~(x)= 4) ~(x) and so 4)_C ~. As 

O'  == P', Q = ff(O')  == ~b(P') = P. All that remains is to define h to show that 

Q ~ Ds3,R,g,t. We simply set h = ~/~ [ _L'~ = g [ L'~ (as L'I C_ L, _L[ C_ ~[). As g D f, 

h I_L~=fI_L~. Next if O:hj[L_,]~g[L_~] is given by hj(g-~(x))~x for x ~L~,  
i.e., gj(g-~(x))~x, then we claim that O(Q)<=PIL~. It, of course, suffices to 

check that for the map0 '  sending ~-~hjg-~(x)~4)-~(x)=$-~(x), O'(Q')<= 
Q' [  4)-'[L,]. But ~b-'hjg-'(x) = f~g-~ gjg-t(x) = f~jg-'(x) = f~j~,-'4)-'(x). Thus if 
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y = $-1(x)E ~[_/51] the map 0' is given by/~]g-'(y) ~ y. This however is the very 

map for which the definition of Ds,p,,i,~,i says that 0 ' (O ' )=  < 0 ' I $  I[L~]. Finally 

h[_L~] = L6 and h[L~] = L~ and we need only check that L~ Csp L~ and that the 

rank condition is satisfied. Now we chose L~C_ L~ C~pL with L~ fq L~ = L6 and 

so L~C_o,dL~. If x Edcl~+,L~,  x = x0 v xl with x0 = max{y < x [y Edcl~eo+,Lp} 

L '  and x, = max{y < x ] y E L}. By (*), Xo ~ dcl~o+, o C dcl~+, L~ and so x0 is the 

largest element of dcl,.+, L~ below x. By (**), x~ E L~ C_ L and so Xl is the largest 

element of that set below x. Similarly the generation process in dcl:eo+, Lp and L 

applied to such decompositions gives the same results as the one for dclz.+, L~ 

and L I. Of course the other requirement (ii) is guaranteed by the corresponding 

one for Le C~pL(2~+~) and (*). Thus L~CspL'~(Sf~+~). As L ' I - L ~ C L - L e C  
, :~a +1 - -  ,:,~fcx, the rank condition is fulfilled as well. [] 

All that remains is to note that at limits qgs-genericity is automatic. 

LEMMA 3.11. I f  ca, is c~5-generic in ~ for every a < h then ~ = (.J,<~ cfl, is 

~5-generic in ~ = [..).<~ ~ .  

PROOF. Note that the sequence is monotonic as cg~ _C ~+1 - -  any P E ~o 

represents itself in ~+~. Thus all the requirements for the c~5-genericity of qd~ 

are guaranteed by the ~5-genericity of each cg~, a < h. 

Thus modulo the proofs of Lemmas 2.9 and 3.9 which will come in the next 

section we have completed the proof of our main result: 

THEOREM 3.12. Every size ~ u.s.l. ~ with 0 and the c.p.p, is isomorphic to an 

initial segment of @. 

PROOF. Form ~ *  = ~ ~ an end extension of 5¢ as in Lemma 3.5. Then 

define ~ .  and c£~-generic ~. as described above. The map sending x ~ Lg* to 

deg(G~) where 

Gx = U{Te,~ (~i) [ ::la(P @ ~ & x E Le)} 

defines an isomorphism of &g* onto an initial segment of ~ by the usual 

arguments from qgs-genericity as in Theorem 1.17. As ~ Co,~ ~ *  the restriction 

of this map to Le gives the desired embedding of &e onto an initial segment of ~. 
[] 

REMARK 3.13. Of course if we include the dense sets of q~4 (modulo a 

translation to set coding) we guarantee that for each x E ~ and e E w if $ ~ is 

total then $ x  is total for every X on some recursive tree containing G~ as a 

branch. Thus each set T-reducible to G~ is in fact tt reducible to it. This then 
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gives an embedding of Le simultaneously onto an initial segment of the tt, wtt 

and T degrees. 

4. Refinements and amalgamation 

We can now revert to the notation of Section 2 so that ~ is the notion of 
forcing there defined for some given countable u.s.l. (with 0) Le. Our basic task in 
this section is to prove that one can construct the refinements of sequential tables 
needed to prove Lemmas 2.9 (extendibility of conditions) and 3.9 (amalgama- 
tion). Many of the ingredients of the construction of course come from Lerman 
[9], Lachlan and Lebeuf [8] or Lerman [10, appendix B]. 

THEOREM 4.1. Suppose we are given u.s.l.'s ~oCspLel(Le4), =~?IC_Le3CLe4, 
Le2 C_ Le4, an isomorphism l : Lel --% Le2 with I r Leo = id (see Diagram 4.2) such that 

any element x of ~2 which is below any y E Le3 is in fact in ~o and a recursive 

extendible sequential table O for Le3. We can then construct a recursive extendible 

sequential table cb for ~4 and recursive functions k, g and F such that for every 

iEoJ 
(i) g sends cbi to a positive u.s.l, table gob, for ~4 with ga(x)= 

a (IIo(x)v/Hi(x)) for x E dclz, Lel and otherwise for each x E Le4, a E ~,, ga (x) 

is a distinct element not appearing in ~ (i.e., not in the range of any element of 
~,). 

(ii) F is an isomorphism of positive tables for ~4 such that Fx = id for 

x E dcl~e, Leo and otherwise for each x E Le4 and ga (x) (for ot C ~i), Fx (ga) (x) is a 

distinct element not appearing in d~i or gd~. 
(iii) q~, U Fgqb,-~ (qb, U Fgqb,)I~?3~-% Ok(,). 
(iv) + , - + ~ ,  I L e ~ o  Ok<,). 
(v) F g + , ~ F g O ,  tLe3~O~(,). 

Before giving the rather technical proof of this theorem we note how it is used 
to give the desired constructions. 

"- ~,pLet- ~ - ~ %  

~N,~ l~ I~ ~74 

Le2 ° ' J / ~ "  

Diagram 4.2. 
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COROLLARY 4.2. Every finite lattice 3? has a recursive sequential table ¢b. 

PROOF. The trivial table consisting of just the map 0 ~ 0 for each ¢,  is clearly 

a table for 3?o = {0}. Apply the theorem with 3?0 = {0} = 37~ = 3?3 and 37 = 3?4. [] 

LEMMA 2.9. If  0 is a recursive sequential table for 3? and 37' is a finite 
extension of 3? then there is a recursive sequential table • for 3?' which refines O. 

PROOF. Apply the theorem by setting 3?o = {0} = 3?~, 3?3 = 37 and 3?4 = 3?'. (b 

is then the required table and k shows that it refines O. [] 

LEMMA 3.9. I f  ~ is appropriate to ~ and 3? is saturated then the sets Ds,~o.~ , 

and D'~,~.~,g,t are dense in ~. 

PROOF. Ds,,,,LI: We are given P E N and Lo Csp L1(37). By Lemma 3.4 there 

is an L D_ Le with Lo C sp L~(L). The proof of Lemma 2.11 for this L then gives a 

O --< P with Lo = L and so O ~ Ds,Lo,L,. 

D;,1,R,g,t: We may assume that the given P E ~ refines R. As in the proof of 

Lemma 3.10(0 we may choose an 3?4 containing Lp and a realization L[ of _L; 

given by an h extending f on L ;  such that h[_L;]_C,p h[_L[](3?) and such that any 

element x of h][L_~] which is below any element y E Le is in fact in hi_L;] C_ Lp. 

We now apply the theorem with 3?0 = g[Lo]C~pg[_Lt] =3?b  3?3 = Lp, O---Oe, 

3?2 = hj[L_~] and I of the theorem induced by the j of the dense set in the obvious 

way: l(g(x)) = hj(x_). Let qb, k, g and F be as in the conclusion of the theorem. 

We define our required O =< P by first setting Lo = 3?4 and ~o  = qb. The trees 

To.~ in O are defined by cases: 

(a) x E Lp. Set To,x (Q) = Tv,~ (0k(°)). [Note that as q5 1L~ refines O any O I x 

string is a • I x string for x E Lp.] Suppose by induction that To.~ (~) is defined 

for lthcr = i so that there is a z of length k(i) such that To,~ (~) = T~,~(r). We 

wish to define To,~(o*n)  for n Eqb, lx. As k shows that qb refines O, 

n E ®k(o[ x and so we may set To,~ (o- * n) = Te.~ (r  * n k0+~)-k(O) and continue the 

induction. 

(b) For x ~ 3 ? 2 =  h][L_x] (and x f f L p ) ,  let Tax be the ~ [ x  identity tree. 

(c) For l(x) E 372 we build a subtree of T~,~. We begin by setting To, m)(O) = 

Tp,~ (0k~°)). Again suppose inductively that, for lth(~r)= i, To,,.~(~r) is defined so 

that there is a r of length k(i)  with To,,~)(~r)= Tp,~ (z). We now wish to define 

To.,~)(o" * n) for n E ~  I I(x), i.e., n = a(l (x))  for some a EdO~. By conclusion 

(iv) of the theorem Fga ~ 0~o) and so we may set 

r o . , . ) (  * n )  = T.. .  ( r * ( Fgo, ( x ) k'' + 
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and continue the induction. Note that this definition depends only on n = 

a(l(x))  and not on the choice of ot since for /3 Eqbi, /3(/(x))= ol(l(x)) ,~ 
Fg/3(x)= Fga(x) as Fga(x)= Fx(a(l(x)) and Fx is 1-1. 

One should also note that the directions in cases (a) and (c) give the same 

results for x E Lp f3 ~2 = ~o since for such x, l(x) = x and Fga(x)  = a(x)  for 

any a U qbi by conclusions (i) and (ii) of the theorem. 

The maps between [To, x] and [To, y] required in the definition of Q are just 
those induced by qb in the usual way. As qb refines • the situation is exactly as in 

the proof of Lemma 2.1 and the maps in O for y < x  in Lp are just the 

restrictions of those in P. Thus O < P. 

All that remains is to verify that ~(O)<= R I LPl where ~b is specified as in the 

definition of the dense set by h j g - l ( x ) ~ x  for x E L I = g [ L 1 ]  and dom~b = 

hj[L_~]. This map is however precisely 1-1 on Zf2. Of course the tree Tt(o),x is just 

To,,x) which was defined as a subtree of Tp, x C_ TR,x as required. As for the maps, 

consider any y < x in ~ and suppose that Sx E [ To,,x)] is mapped to Sy ~ [To.t(y)] 

by the maps F o, t(x),,y). We must show that FR,.,y ( S~ ) = Fe, x,y ( S .  ) = Fo,.,y ( S. ) = Sy. 
Recall, however, that if S~ = To,.~)[h] then 

Sy = To,,(y)[fo,,(~),,(y)h ]. 
Thus 

S, = T,., (0 k(°)) * (Fga, (x)k(, +,)-k(,) I i E to } 

where a,( l (x))= h(i). If we apply Fe.,.y we get 

T/..y (O k(O)) * (Fga, (y)k(,+l)-k(,) [ i E OJ). 

On the other hand Sy = To..y)[fo...).t(y)h] = To..y)[(a~ (/(y))[ i E to)] where again 

a~ ( / (x) )=  h(i). By definition of To..y) this is just 

Te.y (0 k<°)) * (Fga~ (y)k.+~)-kO) [ i E to) 

as required. [] 

Before diving into the proof of Theorem 4.1 we note a few useful facts and 

lemmas (with the notation as in the theorem). 

FACT 4.3. If g satisfies the other conditions imposed in (i) then g ~  is 

automatically a positive table for &¢4. (Thus ~ U gqb~ is a table for ~4.) 

PROOF. We must verify clauses (i)--(iii) of Definition 2.1. 

(i) As 0 E dcl~e, Le~, ga (0) = t~ (11o(0) v/II~(0)) = a (0) = 0 for every a ~ qb,. 

(ii) Suppose a,/3 Eqb~, x ~< y ~ 4  and ga (y )  = g/3(y). As we may assume 

that a ~ / 3  the conditions on g imply that y E d c l ~ e , ~ .  Thus ga(y )=  
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a(IIo(y) v / I I , (y ) )  =/3(Ho(y)) v / I I , (y) )  = g/3(y). As x ~ y, x E dcl~e, 3?, and so 

ga(x) = a ( I /o (x)v / I / , (x ) ) ,  g/3(x)=/3(IIo(x) v IH,(x)). As x ~< y, I/, (x) < II, (y) 

and so /Ill(x) </(II~(y))  as well. Thus Ho(x) v/(II~(x)) < IIo(y) v/II l (y)) .  As qb~ 

itself satisfies (ii) of Definition 2.1, ga(x) = a (Ho(x)v/H~(x))  = 

/3(no(x) v / n , ( x ) )  = gfl(x). 
(iii) As above ga(x)=g/3(x), ga(y)=g/3(y) and z = x  v y imply that 

x, y, z • dcl:e, 37~ and so a(Ho(z) v/l-I~(z)) = ga(z) and, similarly for/3, x and y. 

Now as 37o C_sp 371(3?,) the associated generation process produces IIo(Z), II~(z) 

from {H, (x), I-L (y)} entirely inside 3?4. If we apply the same process to 3?0 C_ 3?2 

in place of L,°0C_ 37, to {IIo(x),lII~(x),IIo(g),ll-I(y)} we of course get IIo(Z), 

lIL(z). By clauses (ii) and (iii) of Definition 2.1 the generating process preserves 

equality of values for different a,/3 • qbi. Now ga =- g/3 modulo x and y, a ---/3 

modIIo(x), /II,(x), IIo(y) and /IL(y).  Thus a -=/3 modulo any element gener- 

ated in this process and so in particular IIo(z) and /IIl(z). Thus a--- 

/3 mod(Ho(z) v/H~(z))  as required. [] 

FACT 4.4. The conditions on g and F imply that g@~ I dcl~e,3?l and so 

F g ~  I dclz 4 3?~ are uniquely determined by ~ ,  I and F~ for x • dcl~e, 3?~ and in 
fact dp~ C_~ qbi U Fg@~. 

PROOF. The uniqueness is clear. By Fact 4.3 qb~ U Fg~P~ is a table for 3?4. We 

must check admissibility. Consider any Fga for a • @~. We claim that a is the 

required witness in @~: If 3' •@~ and Fga(x)= 3'(x) then x • dclz437o by the 

requirements on F and g, Thus Fga (x) = a (x) as required. []  

FACT 4.5. (iii) f f  (iv) & (V). 

Suppose a • O~,~ and has a witness for admissibility/3 • qb~ tO Fg@~, PROOF. 

i.e.~ 

V3' • ¢, u Fg¢,, Vx ~ 3?@ =-, 3' ~ o~ - , / 3 ] .  

/3 clearly witnesses (iv) or (v) according to which of qbi, Fg@, it belongs to. 
Suppose /3 • @~ and we have 3' • @~ and x with Fgy - ,  a. Then Fg3" =-,/3 by 

admissibility. The conditions on F then imply that x • dcl.~, 3?o and so Fg3"(x) = 
3'(x) = Fg~(x) =/3(x).  Thus Fg/3 is the required witness for (v). On the other 

hand if /3 • Fg@~, say, /3 = FgS. If we are given 3' • qb~ with ce--,3' then 

Fg3 --x3" and again x • dcl:e, 3?o. Thus 6 ( x ) =  Fg6(x)= y ( x ) =  a(x) and so 6 is 

the required witness for (iv). [] 

Now to build @~ so that @ is a sequential table we must guarantee that the 

elements (interpolants) required by Definition 2.2b (iii) and (iv) for elements in 
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~i exist in @i.~. To this end we cite a definition and result from Lerman [10, 

appendix B, 3.11 and 3.121 with the proviso that one reverts to the treatment of 

(iv) in Lerman [9] as explained above for Definition 2.1: 

DEFINITION 4.6. A finite table W* extending one W (for some 2?) is a type 1 

extension of 1 r if q /~a ~kI~t* and the requirements of Definition 2.2b (iii) and (iv) 

hold for ~ ,  I r* in place of O~, O~+~. 

LEMMA 4.7. Every finite table • for (a lattice ~ )  has a type 1 extension. [] 

The key new lemma which allows us to build dp to satisfy (iii) of the theorem 

(in addition to being a recursive extendible sequential table for 2?4) is the 

following. 

LEMMA 4.8. I f  we have constructed (by induction) ap~ and have defined g on 

• ~ and F on g@~ so as to satisfy (i)-(iii) and we are given a I r such that 

cb, ~-*, , ~ U ql (a table for 2?4) then we can find H : I r = I r* with Hx (a (x)) = a (x)  

if 3fl  E ¢~, U EGOS, [fl (x )=  a (x)] and otherwise Hx (a ( x ) )>  j for any specified j 

(so that ~ ~ ~ E ~*),  extensions of F and g and a k > k( i )  so that (i)-(iii) 

remain satisfied for these extensions, in particular 

(qb, U ~*)U Fg(¢, U ~*)[273~o Ok. 

PROOF. First note that for any table d#~ ~ dO~ U I t and H as described, 

@~-% qb~ U1r*: Consider any a E@~ U~* .  If c~ EdP~ it is its own witness. If 

a Eq/* then a = Hg for some g ~ which has a witness ¢t E@i. If Y E@~, 

x E 2?4 and a -~Y then by definition of H, a ( x )  = H g ( x )  = 8(x) = y(x). As fl is 

a witness for 6, 6(x) -- f l(x).  Thus fl is also a witness for a. Now extend g to g* 

on qb~ U • as specified by (i) choosing elements not in the ranges of @~, ~ ,  gqb~ or 

Fg@~ when new elements are called for. Similary let F* extend F (i.e., the finite 

amount defined so far) as required in (ii). Again new elements are chosen from 

those not yet appearing in the construction. By Fact 4.3 g*(Cb, U I 0 and so 

F * ( ~  U q/) are positive tables for 2?4 and so @~ U • U F*g*(qb, U ~ )  is a table 

for ~4. 

CLAIM 1. ¢, UF*g*(¢,)C_,  (¢, UI ' )UF*g*(@,  U~). 

PROOF. Consider first any a E @~ U I.'. It has a witness/3 E q)~ to @i '->, qb, U 

• . It is also the witness we require: Consider any y E @, U • U F*g*(@~ U I 0. 

If 1, ~qb~ U ~  we are done. If y = F ' g * 8  for 6 ~@~ U • then as y ( x ) =  a(x ) ,  

E dclse,~o and 7 ( x ) =  F * g * 8 ( x ) =  g*6 (x )=  g(x). Thus /3(x) = 6 ( x ) =  7(x) 

as required. 
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Next consider F*g*a for c~ ~ qh U ~ .  We claim that F'g*~3 is the required 

witness where/3 is the one for c~ in qb~ C_a qb~ U W. Consider any 3' and x with 

F*g*a (x) = y(x) .  If 3/E qb~ U qs then x E dcLq ~o and F*g*c~ (x) = g*ot (x) = 
c~(x) = y ( x ) = / 3 ( x )  = g* /3 (x )=  F*g*/3(x) as required. On the other hand if 

y = F ' g * 6  for some 6 Eqb, U ~  then F*g*6(x)=F*g*a(x) and so by the 

requirements on F*, g*6(x)=g*a(x).  Thus by the requirements on g*, 

x E dclz, 5(1 and g*6(x)= 6(H0(x)v/ l ]~(x))  = c~(IIo(x)v lrl,(x))= g*,~(x). As 
/3 is a witness for a, c~(IIo(x) v / I L ( x ) ) = / 3 ( I I o ( x ) v / I L ( x ) ) - - g * f l ( x ) =  

F*g*fl(x) = F*g*6(x) = y (x )  as required for F'g*~3 to be the desired witness. 
[] 

We can now apply (vi) of the definition of an extendible table (2.3(b)) to ®~(~) 

with ] '> j  larger than any element used so far to get a k > k ( i )  and an 

isomorphism P as there described to yield the foll6wing diagram: 

a~ '],1o 

Y=cI ) iUF*g*~ iUP~UPF*g*~  > T[~3 " -~ Ok 

It now suffices to show that we can define H : ~ ~*  and extensions of F and 

g such that ~* U Fg~* = P ~  U PF*g*~. We first claim that we can set H = P. 

The requirements on P in (vi) are precisely those needed for H in the theorem. 

Thus the final claim is that we can define acceptable extensions F+ and g+ of F 

and g so that PF*g*qS = F+g÷~F* = F+g+p~. Suppose then that a E ~ - ~ i .  

We must define g+Po~. If x~dcl~e,~l  then we can let g+Pa(x) be any new 

distinct element and then set F+g+Pa(x) to be PF*g*a(x). (As g* suitably 

extends g, g*a(x) and so F*g*a(x) are not mentioned in F g ~  Uqbi. The 

definition of P then makes PF*g*a(x)> j and so a new number eligible to be 

F÷g+Pa(x).) Thus for x ~  dcl~, LP~ we have suitably defined F~ + and g+Pot(x) for 

a E q ~ .  

Next consider an x E dcl~e, ~1 so that x = IIo(x) v IL(x). We are required to set 

g+Pa(x) = (Pa)(IIo(X)v III,(x)). Thus we must set 

F+x(Pa (IIo(x)) v /H i (x ) )  = PF* g* a (x ) = PxF*(a (IIo(X) v/H,(x)) ) .  

We must now verify that F + suitably extends Fx. The first concern is that if 

x Edcl~e,~o then Fx =id .  In this case, however, Ho(x)vlH~(x)=x and so 

g+Pu(x) = Pa(x) and PF*g* a(x) = PF* a(x) = Pa(x) as F*~ = id as well. The 

only other concern is that, for x Edcl~e, Lf~-dcLe, LPo, F + extend Fx, i.e., 
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Fx ((Pa)(II0(x)v llIl(x))) may already be defined. This can happen, however, 

only if 3/3 E ~ with/3(x) = (Pa)(IIo(x) v lIIl(x)). By our choice of P, however, 

this can occur only if 

::t5 ~ (~, U F+g+~,)[~(IIo(x)v lH , (x ) )=  a (IIo(x)v/II , (x))]  

in which case 

v / n , ( x ) )  = (rio(x) v /n , (x ) ) .  

Thus F~ (a (Ho(x)v/H,(x)) )  is defined and so equal to F*(a(Ho(x)v lH,(x))) as 

F* D F. If 8 E d/'i then 

F*(a(Ho(x) v/ I I , (x) )  = v /H,(x)) )  = F*g*~(x) 

and so Px (F*g*~(x)) = F*g*~(x) = F*x(a(Ho(x) v/H~(x))) as required. On the 

other hand if 8 = F * g * T  for some T Eqbi then we could not have 

t5 (IIo(x) v l H~ (x)) =/3 (x). The point here is that as x ff dclz, Leo, l lIz (x) ff dcl~¢ Le~ 

and so g*3' and so F*g*'y at Ho(x) v /H i (x )  are by choice of g*, F* elements not 

mentioned in qb~. Thus F~ 3 Fx as required. [] 

PROOF OF TrtEOREM 4.1. We construct ~ and define F and g on the 

appropriate domains by induction. 

Step 0. Let qt be any finite table for Lea _~ Le.~. Apply (v) of the definition of 

extendibility (2.3(b)) to 19 to get $ = ~*---~ qt* [ L  e3 ~ Oi. Define g* on xt t* and 

F* on g*~*  as required in (i) and (ii) of the theorem with new elements chosen 

outside of Oi as well as ~*.  By Fact 4.4 ~ * U F * g * ~ *  is a table for Le, 
admissibly extending ~*.  We can now apply (vi) of Definition 2.3(b) to get 

q~* ~" q~* r Le3-, 70 oi  

We can now set qbo = ~*,  g = g* and F =  PF*. Thus qboU Fgqbor Le3~a Ok and 

we may set k (0) = k to begin the construction. The only point to verify is that F 

satisfies the requirements of the theorem: If x C dcl.~, Leo and a E ~o = ~*  then 
ga(x) = a(x) and Fx(ga)(x)= PxF*(ga)(x)= Pxa(x)= a(x) as Pa = ot for 

a ExI t*. On the other hand if x~dc lz ,  Leo then F*g*a(x) and so the 

PF*g*a(x) = Fga(x) are now distinct elements as required. 
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We now list all possible instances of (v) and (vi) of the definition of 

extendibility for Lf4, qb and satisfy the nth ones at stage 2 n + l ,  2 n + 2  

respectively. In either case we first make sure we get a type 1 extension. 

Step i + 1. By Lemma 4.7, d)~ has a type 1 extension qb[ to ~ .  By Lemma 4.8 we 

can find k > k(i), H : ~*  = • and extensions for F and g so that ~ Ca @i tO ~*  

and 

(,:t,, tO u ,I,*) r 

As H,(a(x) )= a(x) if ]/3 6 ¢ , [ /3(x)  = a(x)] ,  it is clear that ¢, UxF * is also a 

type 1 extension of qb~ as is any admissible extension of it. For notational 

convenience let @, U tF* = ¢,'. We now divide into cases by the parity of i. 

i =2n .  We must guarantee that @ satisfies the nth instance of (v) of 

Definition 2.3(b). Suppose it is given by a table W for ~ '  _D ~f4. We must build 

qb~+l an admissible extension of qb', an isomorphism P : $-% 

~F*--> W* r~4 C_, @~+1, and extensions of F and g as required. 

We begin by choosing xF' -~ W with all elements in the range of W' new (i.e., not 

mentioned in @', Fg@' or Ok). Thus @'C_~ ap'u~"r3~4. We can now apply 

Lemma 4.8 to get a k ' > k ,  an H : W ' I Z e 4 ~ W  * with qb'C_, @ U * *  and 

(¢' U ~*  U Fg(¢' U ~*)) I ~3 C_. Ok. 

We can clearly extend H by setting Hx = id for x ~ ~4 "SO that H ~ '  -~ qt, _~ q~. 

Thus we have 
xF 

H~F'---~ H~F' I ~ ,  = q~* C_a ~' to ~*. 

We may now set a)i+~ = ~' to q~*, k(i + 1) = k' and extend F and g as specified 

by Lemma 4.8 to satisfy the nth instance of (v) and keep the induction going. 

i = 2n + 1. We must guarantee that qb~+l satisfies the nth instance of (vi). 

Suppose it is given by a table W for ~'_D ~4 with q r I~4  Ca ~,, C_a qb, (some 

i' < i), a W* admissibly extending W and a j < i. It suffices to build qb~+~ _De qb' and 

a P:xF*-~ W* with W÷[~4_Ca ~÷~ and to extend F and g appropriately to 

satisfy (i)-(iii). 

We begin by defining P* on W* so that P * a ( x ) =  a(x) if 

~/3 ~ q t [ / 3 ( x ) =  a(x)]  and otherwise P* sends everything to new larger ele- 

ments. We claim that ~'C_~ qb'U P 'W* I~4. For any P ' a *  with a*  ~ *  ~ 4 ,  

a * has a witness o~ ~ W to q~ _C~ W* and ~ has one/3 ~ qb' to q~ I ~4 C_~ qb'./3 is 

the required witness for P'a* .  Consider any 7~qb ' ,  x ~ ,  with T ( x ) =  

P*o~*(x). By the choice of P*, :16 ~ W[~(x)=  t~*(x)] and P*o~*(x)= o~*(x)= 
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~5(x) = y(x).  By the choice of a, a(x)  = 6(x) ( = 7(x))  and so by the choice of/3, 

/3(x) = ~/(x)= P*a*(x) as required. 
We can now apply Lemma 4.8 (for j of this instance) to get 

H : P * ~ *  r ~4 --% q~+ r ~4 where ~+ = HP*~* once one extends H by setting 

Hx = id for x ~ ~4. This gives us @' C_, cI)' U qr+ r ~4 and suitable extensions of F 

and g such that (i)--(iii) are satisfied for @,+1 = dp'O ~÷ r ~4'with some suitable 

k' > k. We can then set k(i + 1) = k'. We have thus also satisfied (vi) by setting 

P = H P * : ~ * - - - ~  + as long as P satisfies the conditions of (vi) and 

XI)'+ I ~ 4  --Ca (I)i+l • AS for the first point, if a E • then P*a = a E P*q~* but as 

XI~Io~4C(~ i C_(~ ', H~(a(x))= a(x)  for x G~?4 while for x E ~ 4 ,  Hx = id .  Thus 

H P * a = a  for a E ~ .  On the other hand if n ~ r x  then P*(n)~  
(cb'UFgCb')Ix and so HxP*(n)> j  as required. Finally to see that 
~F + I ~4 C_. @,+1 = q~' O q~+ I S~4 consider any a ~ ~'.  As ~F + t ~4 ~ ~If I ~4 ~ (tot we 

may choose a witness/3 E qt. We claim/3 works for q~+ I ~4 as well. If 3, E ~F ÷, 

x ~ ~4 and "y(x) = a(x)  then by choice of  P*, 3~ E q~ with 7(x)  = 8(x)  = a(x). 

Now by choice of/3,/3 (x) = ~ (x) = a (x) as required. []  
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